Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218042
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerrà Marcús, Aina-
dc.contributor.authorCasacuberta, Carles-
dc.contributor.authorPujol Vila, Oriol-
dc.date.accessioned2025-01-28T09:01:55Z-
dc.date.available2025-01-28T09:01:55Z-
dc.date.issued2023-07-19-
dc.identifier.issn0941-0643-
dc.identifier.urihttps://hdl.handle.net/2445/218042-
dc.description.abstractThis article describes a method to analyze time series with a neural network using a matrix of area-normalized persistence landscapes obtained with topological data analysis. The network’s architecture includes a gating layer that is able to identify the most relevant landscape levels for a classification task, thus working as an importance attribution system. Next, a matching is performed between the selected landscape levels and the corresponding critical points of the original time series. This matching enables reconstruction of a simplified shape of the time series that gives insight into the grounds of the classification decision. As a use case, this technique is tested in the article with input data from a dataset of electrocardiographic signals. The classification accuracy obtained using only a selection of landscape levels from data was 94.00% averaged after five runs of a neural network, while the original signals achieved 98.41% and landscape-reduced signals yielded 97.04%.-
dc.format.extent14 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00521-023-08731-6-
dc.relation.ispartofNeural Computing & Applications, 2023, vol. 35, p. 20143-20156-
dc.relation.urihttps://doi.org/10.1007/s00521-023-08731-6-
dc.rightscc by (c) Aina Ferrà Marcús et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationAnàlisi de sèries temporals-
dc.subject.classificationHomologia-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherTime-series analysis-
dc.subject.otherHomology-
dc.titleImportance attribution in neural networks by means of persistence landscapes of time series-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec733944-
dc.date.updated2025-01-28T09:01:56Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
260926.pdf1.85 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons