Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/218042
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ferrà Marcús, Aina | - |
dc.contributor.author | Casacuberta, Carles | - |
dc.contributor.author | Pujol Vila, Oriol | - |
dc.date.accessioned | 2025-01-28T09:01:55Z | - |
dc.date.available | 2025-01-28T09:01:55Z | - |
dc.date.issued | 2023-07-19 | - |
dc.identifier.issn | 0941-0643 | - |
dc.identifier.uri | https://hdl.handle.net/2445/218042 | - |
dc.description.abstract | This article describes a method to analyze time series with a neural network using a matrix of area-normalized persistence landscapes obtained with topological data analysis. The network’s architecture includes a gating layer that is able to identify the most relevant landscape levels for a classification task, thus working as an importance attribution system. Next, a matching is performed between the selected landscape levels and the corresponding critical points of the original time series. This matching enables reconstruction of a simplified shape of the time series that gives insight into the grounds of the classification decision. As a use case, this technique is tested in the article with input data from a dataset of electrocardiographic signals. The classification accuracy obtained using only a selection of landscape levels from data was 94.00% averaged after five runs of a neural network, while the original signals achieved 98.41% and landscape-reduced signals yielded 97.04%. | - |
dc.format.extent | 14 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Springer Verlag | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1007/s00521-023-08731-6 | - |
dc.relation.ispartof | Neural Computing & Applications, 2023, vol. 35, p. 20143-20156 | - |
dc.relation.uri | https://doi.org/10.1007/s00521-023-08731-6 | - |
dc.rights | cc by (c) Aina Ferrà Marcús et al., 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Xarxes neuronals (Informàtica) | - |
dc.subject.classification | Anàlisi de sèries temporals | - |
dc.subject.classification | Homologia | - |
dc.subject.other | Neural networks (Computer science) | - |
dc.subject.other | Time-series analysis | - |
dc.subject.other | Homology | - |
dc.title | Importance attribution in neural networks by means of persistence landscapes of time series | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 733944 | - |
dc.date.updated | 2025-01-28T09:01:56Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
260926.pdf | 1.85 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License