Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218170
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBernadet, L.-
dc.contributor.authorSegura-Ruiz, J.-
dc.contributor.authorYedra, L.-
dc.contributor.authorEstradé Albiol, Sònia-
dc.contributor.authorPeiró Martínez, Francisca-
dc.contributor.authorMontinaro, D.-
dc.contributor.authorTorrell, M.-
dc.contributor.authorMorata, A.-
dc.contributor.authorTarancón, A.-
dc.date.accessioned2025-01-29T16:08:38Z-
dc.date.available2025-01-29T16:08:38Z-
dc.date.issued2023-01-30-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://hdl.handle.net/2445/218170-
dc.description.abstractElectrolyte-cathode interfaces are critical regions of solid oxide fuel cells where important degradation phenomena are localized due to cation interdiffusion and reactivity. State-of-the-art barrier layers deposited by screen-printing are not fully blocking, resulting in the formation of insulating phases such as SrZrO3. This article is the continuation of a previous work where a dense gadolinium doped ceria (CGO) barrier layer deposited by pulsed laser deposition (PLD) was optimized and deposited on large-area cells (80 cm2) (Morales et al., 2018) [1]. Those cells, together with reference cells made with CGO screen-printed barrier layers were operated in the same stack for 14000 h during two years. In this work, advanced post-mortem characterisation of the cells is presented showing important microstructural differences between the two types of cell. Operated reference cells present formation of SrZrO3 and cathode demixing, as observed in previous works. Moreover, the generation of a fracture parallel to the barrier layer inside the electrolyte is reported, which is compatible with the coalescence of Kirkendall voids formed at the diffusion front of the Gd/Ce cations into the electrolyte. In contrast, the PLD barrier layer remains stable, avoids the formation of insulating phases and prevents the formation of the mentioned fracture.-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.jpowsour.2022.232400-
dc.relation.ispartofJournal of Power Sources, 2023, vol. 555-
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2022.232400-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationÒxids-
dc.subject.classificationDifusió-
dc.subject.classificationPiles de combustible-
dc.subject.otherOxides-
dc.subject.otherDiffusion-
dc.subject.otherFuel cells-
dc.titleEnhanced diffusion barrier layers for avoiding degradation in SOFCs aged for 14000 h during 2 years-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec728252-
dc.date.updated2025-01-29T16:08:38Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
255273.pdf1.44 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons