Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218179
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlanco Portals, Javier-
dc.contributor.authorPeiró Martínez, Francisca-
dc.contributor.authorEstradé Albiol, Sònia-
dc.date.accessioned2025-01-29T16:59:16Z-
dc.date.available2025-01-29T16:59:16Z-
dc.date.issued2022-02-
dc.identifier.issn1431-9276-
dc.identifier.urihttps://hdl.handle.net/2445/218179-
dc.description.abstractHierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core-shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization-UMAP-HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.-
dc.format.extent14 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherCambridge University Press (CUP)-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1017/S1431927621013696-
dc.relation.ispartofMicroscopy and Microanalysis, 2022, vol. 28, p. 109-122-
dc.relation.urihttps://doi.org/10.1017/S1431927621013696-
dc.rights(c) Cambridge University Press (CUP), 2022-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationEspectroscòpia de pèrdua d'energia d'electrons-
dc.subject.classificationReducció química-
dc.subject.classificationDensitat-
dc.subject.otherElectron energy loss spectroscopy-
dc.subject.otherReduction (Chemistry)-
dc.subject.otherDensity-
dc.titleStrategies for EELS data analysis. Introducing UMAP and HDBSCAN for dimensionality reduction and clustering.-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec716072-
dc.date.updated2025-01-29T16:59:16Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
243339.pdf626.51 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.