Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/218179
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Blanco Portals, Javier | - |
dc.contributor.author | Peiró Martínez, Francisca | - |
dc.contributor.author | Estradé Albiol, Sònia | - |
dc.date.accessioned | 2025-01-29T16:59:16Z | - |
dc.date.available | 2025-01-29T16:59:16Z | - |
dc.date.issued | 2022-02 | - |
dc.identifier.issn | 1431-9276 | - |
dc.identifier.uri | https://hdl.handle.net/2445/218179 | - |
dc.description.abstract | Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core-shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization-UMAP-HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied. | - |
dc.format.extent | 14 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Cambridge University Press (CUP) | - |
dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1017/S1431927621013696 | - |
dc.relation.ispartof | Microscopy and Microanalysis, 2022, vol. 28, p. 109-122 | - |
dc.relation.uri | https://doi.org/10.1017/S1431927621013696 | - |
dc.rights | (c) Cambridge University Press (CUP), 2022 | - |
dc.source | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) | - |
dc.subject.classification | Espectroscòpia de pèrdua d'energia d'electrons | - |
dc.subject.classification | Reducció química | - |
dc.subject.classification | Densitat | - |
dc.subject.other | Electron energy loss spectroscopy | - |
dc.subject.other | Reduction (Chemistry) | - |
dc.subject.other | Density | - |
dc.title | Strategies for EELS data analysis. Introducing UMAP and HDBSCAN for dimensionality reduction and clustering. | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.idgrec | 716072 | - |
dc.date.updated | 2025-01-29T16:59:16Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
243339.pdf | 626.51 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.