Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218187
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaiutti, Federico-
dc.contributor.authorBlanco Portals, Javier-
dc.contributor.authorAnelli, Simone-
dc.contributor.authorTorruella, Pau-
dc.contributor.authorLópez-Haro, Miguel-
dc.contributor.authorCalvino, Jose-
dc.contributor.authorEstradé Albiol, Sònia-
dc.contributor.authorTorrell, Marc-
dc.contributor.authorPeiró Martínez, Francisca-
dc.contributor.authorTarancón, Albert-
dc.date.accessioned2025-01-29T17:42:04Z-
dc.date.available2025-01-29T17:42:04Z-
dc.date.issued2021-07-23-
dc.identifier.issn1932-7447-
dc.identifier.urihttps://hdl.handle.net/2445/218187-
dc.description.abstractHard-template nanocasted mesoporous cerium oxide possesses a unique combination of thermal stability, high surface area, and short diffusion lengths for mass and gas transport, which makes it relevant for high-temperature catalysis, sensing, and electrochemical applications. Here, we present an in-depth study of a number of mesoporous doped ceria systems, and we assess their fundamental structure and functionalities by complementary transmission electron microscopy imaging and spectroscopy, electron tomography reconstructions, and electrochemical impedance spectroscopy. We employed surface chemical modifications for increasing the ionic conductivity of as-synthesized mesoporous Gd-doped ceria by 2 orders of magnitude, enabling the ionic pathway across mesoporous particles. Complementary bulk doping strategies (by the addition of Pr) result in the easy tuning of the electrical transport mechanisms converting pure ionic mesoporous ceria into a mixed ionic-electronic conductor. The results obtained here are rationalized in light of local charge accumulation and mobility effects, providing a potential tool for engineering transport properties in nanocasted ceria and similar nanostructured materials for use in energy applications in the form of functional composites, infiltrated structures, or catalytic layers.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jpcc.1c04861-
dc.relation.ispartofJournal of Physical Chemistry C, 2021, vol. 125, num.30, p. 16451-16463-
dc.relation.urihttps://doi.org/10.1021/acs.jpcc.1c04861-
dc.rights(c) American Chemical Society, 2021-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationÒxids-
dc.subject.classificationConductivitat elèctrica-
dc.subject.classificationEstructura química-
dc.subject.otherOxides-
dc.subject.otherElectric conductivity-
dc.subject.otherChemical structure-
dc.titleTailoring the transport properties of mesoporous doped cerium oxide for energy applications-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec716070-
dc.date.updated2025-01-29T17:42:04Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
243337.pdf4.37 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.