Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/218417
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGómez, Elizabeth-
dc.contributor.authorContreras, David-
dc.contributor.authorBoratto, Ludovico-
dc.contributor.authorSalamó Llorente, Maria-
dc.date.accessioned2025-02-03T08:27:57Z-
dc.date.available2025-03-19T06:10:15Z-
dc.date.issued2024-03-20-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://hdl.handle.net/2445/218417-
dc.description.abstractMulti-Objective Recommender Systems (MORSs) emerged as a paradigm to guarantee multiple (often conflicting) goals. Besides accuracy, a MORS can operate at the global level, where additional beyond-accuracy goals are met for the system as a whole, or at the individual level, meaning that the recommendations are tailored to the needs of each user. The state-of-the-art MORSs either operate at the global or individual level, without assuming the co-existence of the two perspectives. In this study, we show that when global and individual objectives co-exist, MORSs are not able to meet both types of goals. To overcome this issue, we present an approach that regulates the recommendation lists so as to guarantee both global and individual perspectives, while preserving its effectiveness. Specifically, as individual perspective, we tackle genre calibration and, as global perspective, provider fairness. We validate our approach on two real-world datasets, publicly released with this paper (https://tinyurl.com/yc6nnx5v).-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/978-3-031-56027-9_2-
dc.relation.ispartofLecture Notes in Computer Science, 2024, vol. 14608, p. 21-38-
dc.relation.urihttps://doi.org/10.1007/978-3-031-56027-9_2-
dc.rights(c) Springer Verlag, 2024-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationSistemes d'ajuda a la decisió-
dc.subject.classificationIntel·ligència artificial-
dc.subject.otherDecision support systems-
dc.subject.otherArtificial intelligence-
dc.titleMOREGIN: Multi-Objective Recommendation at the Global and Individual Levels-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec753418-
dc.date.updated2025-02-03T08:27:57Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
875653.pdf890.53 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.