Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/21864
Title: | Manifolds on the verge of a hyperbolicity breakdown |
Author: | Haro, Àlex Llave, Rafael de la |
Keywords: | Física estadística Termodinàmica Sistemes dinàmics diferenciables Dinàmica de fluids Statistical physics Thermodynamics Differentiable dynamical systems Fluid dynamics |
Issue Date: | 2006 |
Publisher: | American Institute of Physics |
Abstract: | We study numerically the disappearance of normally hyperbolic invariant tori in quasiperiodic systems and identify a scenario for their breakdown. In this scenario, the breakdown happens because two invariant directions of the transversal dynamics come close to each other, losing their regularity. On the other hand, the Lyapunov multipliers associated with the invariant directions remain more or less constant. We identify notable quantitative regularities in this scenario, namely that the minimum angle between the two invariant directions and the Lyapunov multipliers have power law dependence with the parameters. The exponents of the power laws seem to be universal. |
Note: | Reproducció del document publicat a: http://dx.doi.org/10.1063/1.2150947 |
It is part of: | Chaos, 2006, vol. 16, núm. 1, p. 013120 |
URI: | https://hdl.handle.net/2445/21864 |
Related resource: | http://dx.doi.org/10.1063/1.2150947 |
ISSN: | 1054-1500 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
553064.pdf | 458.31 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.