Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219021
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNagarajan, Bhalaji-
dc.contributor.authorBolaños Solà, Marc-
dc.contributor.authorAguilar Torres, Eduardo-
dc.contributor.authorRadeva, Petia-
dc.date.accessioned2025-02-20T07:45:32Z-
dc.date.available2025-02-20T07:45:32Z-
dc.date.issued2023-09--
dc.identifier.issn1047-3203-
dc.identifier.urihttps://hdl.handle.net/2445/219021-
dc.description.abstractDeep neural networks represent a compelling technique to tackle complex real-world problems, but are over-parameterized and often suffer from over- or under-confident estimates. Deep ensembles have shown better parameter estimations and often provide reliable uncertainty estimates that contribute to the robustness of the results. In this work, we propose a new metric to identify samples that are hard to classify. Our metric is defined as coincidence score for deep ensembles which measures the agreement of its individual models. The main hypothesis we rely on is that deep learning algorithms learn the low-loss samples better compared to large-loss samples. In order to compensate for this, we use controlled over-sampling on the identified ”hard” samples using proper data augmentation schemes to enable the models to learn those samples better. We validate the proposed metric using two public food datasets on different backbone architectures and show the improvements compared to the conventional deep neural network training using different performance metrics.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.jvcir.2023.103905-
dc.relation.ispartofJournal of Visual Communication and Image Representation, 2023, vol. 95-
dc.relation.urihttps://doi.org/10.1016/j.jvcir.2023.103905-
dc.rightscc-by (c) Bhalaji Nagarajan, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationReconeixement de formes (Informàtica)-
dc.subject.classificationVisió per ordinador-
dc.subject.otherMachine learning-
dc.subject.otherPattern recognition systems-
dc.subject.otherComputer vision-
dc.titleDeep ensemble-based hard sample mining for food recognition-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec746151-
dc.date.updated2025-02-20T07:45:32Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
853422.pdf3.94 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons