Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219206
Title: Improving the bond strength of bioactive glass coatings obtained by atmospheric plasma spraying
Author: Garrido Domínguez, Beatriz
Martín Morata, Alejandro
Dosta Parras, Sergi
García Cano, Irene
Keywords: Microestructura
Materials biomèdics
Revestiments
Microstructure
Biomedical materials
Coatings
Issue Date: 25-Jul-2023
Publisher: Elsevier B.V.
Abstract: Bioactive glasses are inorganic biomaterials that can provide a bioactive response and thus favor the successful bonding of orthopedic implants. Some strategies were studied to improve the bond strength of bioactive glasses, such as producing agglomerated bioactive glass powders or designing different coatings combining hydroxy apatite (HA) with bioactive glass. The bioactive coatings were produced by atmospheric plasma spray (APS) onto titanium alloy substrates, and the microstructure and adhesion strength of the developed coatings were evalu ated. It was found that a significant improvement in adhesion strength was obtained for the developed coatings, in particular when thermal treatment was applied to pure glass coatings and when HA was part of the coating. The coatings reactivity in simulated body fluid and Tris-HCl solutions was studied. All coatings showed bioactive behavior, but the ones with only an amorphous phase in the upper part of the coating dissolved faster, releasing a larger proportion of Ca ions, which caused faster nucleation and growth of apatite deposits
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.surfcoat.2023.129837
It is part of: Surface & Coatings Technology, 2023, vol. 470
URI: https://hdl.handle.net/2445/219206
Related resource: https://doi.org/10.1016/j.surfcoat.2023.129837
ISSN: 0257-8972
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
854509.pdf8.43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons