Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/219443
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalé, Jordi-
dc.contributor.authorXirau, Víctor-
dc.contributor.authorFortea, Juan-
dc.contributor.authorHeuzé, Yann-
dc.contributor.authorMartínez Abadías, Neus, 1978--
dc.contributor.authorSevillano, Xavier-
dc.date.accessioned2025-03-04T15:24:09Z-
dc.date.available2025-03-04T15:24:09Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/2445/219443-
dc.description.abstractBrain imaging techniques, particularly magnetic resonance imaging (MRI), play a crucial role in understanding the neurocognitive phenotype and associated challenges of many neurological disorders, providing detailed insights into the structural alterations in the brain. Despite advancements, the links between cognitive performance and brain anatomy remain unclear. The complexity of analyzing brain MRI scans requires expertise and time, prompting the exploration of artificial intelligence for automated assistance. In this context, unsupervised deep learning techniques, particularly Transformers and Autoencoders, offer a solution by learning the distribution of healthy brain anatomy and detecting alterations in unseen scans. In this work, we evaluate several unsupervised models to reconstruct healthy brain scans and detect synthetic anomalies.ca
dc.format.extent4 p.-
dc.format.mediumapplication/pdf-
dc.language.isoengca
dc.publisherIOS Pressca
dc.relation.isformatofReproducció del document publicat a: https://doi.org/ 10.3233/FAIA240415-
dc.relation.ispartofCapítol del llibre: Alsinet, Teresa, Vilasís, Xavier , García, Daniel, Álvarez, Elena (eds.), Proceedings of the 26th International Conference of the Catalan Association for Artificial Intelligence, IOS Press, 2024, [ISBN 9781643685434], pp. 90-93-
dc.relation.urihttps://doi.org/10.3233/FAIA240415-
dc.rightscc by-nc (c) Malé, Jordi et al, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceLlibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals)-
dc.subject.classificationIntel·ligència artificial-
dc.subject.classificationEcoencefalografia-
dc.subject.otherArtificial intelligence-
dc.subject.otherUltrasonic encephalograph-
dc.titleUnsupervised deep learning architectures for anomaly detection in brain MRI scansca
dc.typeinfo:eu-repo/semantics/bookPartca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Llibres / Capítols de llibre (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
FAIA-390-FAIA240415.pdf574.16 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons