Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220204
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSolanes, Aleix-
dc.contributor.authorMezquida Mateos, Gisela-
dc.contributor.authorJanssen, Joost-
dc.contributor.authorAmoretti Guadall, Silvia-
dc.contributor.authorLobo, Antonio-
dc.contributor.authorGonzález-Pinto, Ana-
dc.contributor.authorArango López, Celso-
dc.contributor.authorVieta i Pascual, Eduard, 1963--
dc.contributor.authorCastro Fornieles, Josefina-
dc.contributor.authorBergé, Daniel-
dc.contributor.authorAlbacete, Auria-
dc.contributor.authorGiné, Eva-
dc.contributor.authorParellada, Mara-
dc.contributor.authorBernardo Vilamitjana, Mercè-
dc.contributor.authorPEPs Group-
dc.contributor.authorPomarol-Clotet, Edith-
dc.contributor.authorRadua, Joaquim-
dc.date.accessioned2025-04-02T14:17:00Z-
dc.date.available2025-04-02T14:17:00Z-
dc.date.issued2022-11-17-
dc.identifier.urihttps://hdl.handle.net/2445/220204-
dc.description.abstractDetecting patients at high relapse risk after the first episode of psychosis (HRR-FEP) could help the clinician adjust the preventive treatment. To develop a tool to detect patients at HRR using their baseline clinical and structural MRI, we followed 227 patients with FEP for 18-24 months and applied MRIPredict. We previously optimized the MRI-based machine-learning parameters (combining unmodulated and modulated gray and white matter and using voxel-based ensemble) in two independent datasets. Patients estimated to be at HRR-FEP showed a substantially increased risk of relapse (hazard ratio = 4.58, P < 0.05). Accuracy was poorer when we only used clinical or MRI data. We thus show the potential of combining clinical and MRI data to detect which individuals are more likely to relapse, who may benefit from increased frequency of visits, and which are unlikely, who may be currently receiving unnecessary prophylactic treatments. We also provide an updated version of the MRIPredict software.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Nature-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41537-022-00309-w-
dc.relation.ispartofSchizophrenia, 2022, vol. 8-
dc.relation.urihttps://doi.org/10.1038/s41537-022-00309-w-
dc.rightscc-by (c) Solanes, A. et al., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Medicina)-
dc.subject.classificationFactors de risc en les malalties-
dc.subject.classificationPsicosi-
dc.subject.classificationRessonància magnètica-
dc.subject.otherRisk factors in diseases-
dc.subject.otherPsychoses-
dc.subject.otherMagnetic resonance-
dc.titleCombining MRI and clinical data to detect high relapse risk after the first episode of psychosis-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec735354-
dc.date.updated2025-04-02T14:17:00Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina9332624-
Appears in Collections:Articles publicats en revistes (Medicina)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)

Files in This Item:
File Description SizeFormat 
262335.pdf776.73 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons