Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220222
Title: Perazzo 3-folds and the weak Lefschetz property
Author: Fiorindo, Luca
Mezzetti, Emilia
Miró-Roig, Rosa M. (Rosa Maria)
Keywords: Hipersuperfícies
Geometria algebraica
Hypersurfaces
Algebraic geometry
Issue Date: 15-Jul-2023
Publisher: Elsevier
Abstract: We deal with Perazzo 3 -folds in $\mathbb{P}^4$, i.e. hypersurfaces $X=$ $V(f) \subset \mathbb{P}^4$ of degree $d$ defined by a homogeneous polynomial $f\left(x_0, x_1, x_2, u, v\right)=p_0(u, v) x_0+p_1(u, v) x_1+p_2(u, v) x_2+$ $g(u, v)$, where $p_0, p_1, p_2$ are algebraically dependent but linearly independent forms of degree $d-1$ in $u, v$, and $g$ is a form in $u, v$ of degree $d$. Perazzo 3-folds have vanishing hessian and, hence, the associated graded Artinian Gorenstein algebra $A_f$ fails the strong Lefschetz Property. In this paper, we determine the maximum and minimum Hilbert function of $A_f$ and we prove that if $A_f$ has maximal Hilbert function it fails the weak Lefschetz Property while it satisfies the weak Lefschetz Property when it has minimum Hilbert function. In addition, we classify all Perazzo 3 -folds in $\mathbb{P}^4$ such that $A_f$ has minimum Hilbert function.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.jalgebra.2023.03.008
It is part of: Journal of Algebra, 2023, vol. 626, p. 56-81
URI: https://hdl.handle.net/2445/220222
Related resource: https://doi.org/10.1016/j.jalgebra.2023.03.008
ISSN: 0021-8693
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
259471.pdf498.12 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons