Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/220222
Title: | Perazzo 3-folds and the weak Lefschetz property |
Author: | Fiorindo, Luca Mezzetti, Emilia Miró-Roig, Rosa M. (Rosa Maria) |
Keywords: | Hipersuperfícies Geometria algebraica Hypersurfaces Algebraic geometry |
Issue Date: | 15-Jul-2023 |
Publisher: | Elsevier |
Abstract: | We deal with Perazzo 3 -folds in $\mathbb{P}^4$, i.e. hypersurfaces $X=$ $V(f) \subset \mathbb{P}^4$ of degree $d$ defined by a homogeneous polynomial $f\left(x_0, x_1, x_2, u, v\right)=p_0(u, v) x_0+p_1(u, v) x_1+p_2(u, v) x_2+$ $g(u, v)$, where $p_0, p_1, p_2$ are algebraically dependent but linearly independent forms of degree $d-1$ in $u, v$, and $g$ is a form in $u, v$ of degree $d$. Perazzo 3-folds have vanishing hessian and, hence, the associated graded Artinian Gorenstein algebra $A_f$ fails the strong Lefschetz Property. In this paper, we determine the maximum and minimum Hilbert function of $A_f$ and we prove that if $A_f$ has maximal Hilbert function it fails the weak Lefschetz Property while it satisfies the weak Lefschetz Property when it has minimum Hilbert function. In addition, we classify all Perazzo 3 -folds in $\mathbb{P}^4$ such that $A_f$ has minimum Hilbert function. |
Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.jalgebra.2023.03.008 |
It is part of: | Journal of Algebra, 2023, vol. 626, p. 56-81 |
URI: | https://hdl.handle.net/2445/220222 |
Related resource: | https://doi.org/10.1016/j.jalgebra.2023.03.008 |
ISSN: | 0021-8693 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
259471.pdf | 498.12 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License