Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220282
Title: Approximate option pricing under a two factor Heston-Kou stochastic volatility model
Author: El-Khatib, Youssef
Makumbe, Zororo Stanelake
Vives i Santa Eulàlia, Josep, 1963-
Keywords: Opcions (Finances)
Actius financers derivats
Anàlisi numèrica
Anàlisi estocàstica
Options (Finance)
Derivative securities
Numerical analysis
Stochastic analysis
Issue Date: 3-Nov-2023
Publisher: Springer Nature
Abstract: Under a two-factor stochastic volatility jump (2FSVJ) model we obtain an exact decomposition formula for a plain vanilla option price and a second-order approximation of this formula, using Itô calculus techniques. The 2FSVJ model is a generalization of several models described in the literature such as Heston (Rev Financ Stud 6(2):327–343, 1993); Bates (Rev Financ Stud 9(1):69–107, 1996); Kou (Manag Sci 48(8):1086–1101, 2002); Christoffersen et al. (Manag Sci 55(12):1914–1932, 2009) models. Thus, the aim of this study is to extend some approximate pricing formulas described in the literature, like formulas in Alòs (Finance Stoch 16(3):403–422, 2012); Merino et al. (Int J Theor Appl Finance 21(08):1850052, 2018); Gulisashvili et al. (J Comput Finance 24(1), 2020), to pricing under the more general 2FSVJ model. Moreover, we provide numerical illustrations of our pricing method and its accuracy and computational advantage under double exponential and log-normal jumps. Numerically, our pricing method performs very well compared to the Fourier integral method. The performance is ideal for out-of-the-money options as well as for short maturities.
Note: Reproducció del document publicat a: https://doi.org/10.1007/s10287-023-00486-8
It is part of: Computational Management Science, 2023, vol. 21
URI: https://hdl.handle.net/2445/220282
Related resource: https://doi.org/10.1007/s10287-023-00486-8
ISSN: 1619-697X
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
851627.pdf1.88 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons