Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220344
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerre Torres, Josep-
dc.contributor.authorNoguera-Monteagudo, Adria-
dc.contributor.authorLópez Canosa, Adrián-
dc.contributor.authorRomero Arias, J. Roberto-
dc.contributor.authorBarrio, Rafael-
dc.contributor.authorCastaño Linares, Óscar-
dc.contributor.authorHernández Machado, Aurora-
dc.date.accessioned2025-04-08T17:00:35Z-
dc.date.available2025-04-08T17:00:35Z-
dc.date.issued2023-06-08-
dc.identifier.issn2296-4185-
dc.identifier.urihttps://hdl.handle.net/2445/220344-
dc.description.abstractSprouting angiogenesis is a core biological process critical to vascular development. Its accurate simulation, relevant to multiple facets of human health, is of broad, interdisciplinary appeal. This study presents an in-silico model replicating a microfluidic assay where endothelial cells sprout into a biomimetic extracellular matrix, specifically, a large-pore, low-concentration fibrin-based porous hydrogel, influenced by chemotactic factors. We introduce a novel approach by incorporating the extracellular matrix and chemotactic factor effects into a unified term using a single parameter, primarily focusing on modelling sprouting dynamics and morphology. This continuous model naturally describes chemotactic-induced sprouting with no need for additional rules. In addition, we extended our base model to account for matrix sensing and degradation, crucial aspects of angiogenesis. We validate our model via a hybrid in-silico experimental method, comparing the model predictions with experimental results derived from the microfluidic setup. Our results underscore the intricate relationship between the extracellular matrix structure and angiogenic sprouting, proposing a promising method for predicting the influence of the extracellular matrix on angiogenesis.-
dc.format.extent15 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fbioe.2023.1145550-
dc.relation.ispartofFrontiers In Bioengineering And Biotechnology, 2023, vol. 11, p. 1145550-
dc.relation.urihttps://doi.org/10.3389/fbioe.2023.1145550-
dc.rightscc-by (c) Josep Ferre Torres et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationBiomimètica-
dc.subject.classificationAngiogènesi-
dc.subject.classificationModels matemàtics-
dc.subject.otherBiomimetics-
dc.subject.otherNeovascularization-
dc.subject.otherMathematical models-
dc.titleChemotactic sprouting of Endothelial Cells through an Extracellular Matrix-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec745286-
dc.date.updated2025-04-08T17:00:35Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
850330.pdf3.17 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons