Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220398
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMencattini, Arianna-
dc.contributor.authorRizzuto, Valeria-
dc.contributor.authorAntonelli, Gianni-
dc.contributor.authorDi Giuseppe, Davide-
dc.contributor.authorD'Orazio, M.-
dc.contributor.authorFilippi, Joanna-
dc.contributor.authorComes, M.C.-
dc.contributor.authorCasti, Paola-
dc.contributor.authorVives Corrons, Joan-Lluis-
dc.contributor.authorGarcia-Bravo, María-
dc.contributor.authorSegovia, J.C.-
dc.contributor.authorMañú-Pereira, María del Mar-
dc.contributor.authorLopez-Martinez, Maria J.-
dc.contributor.authorSamitier i Martí, Josep-
dc.contributor.authorMartinelli, Eugenio-
dc.date.accessioned2025-04-10T16:06:24Z-
dc.date.available2025-04-10T16:06:24Z-
dc.date.issued2023-03-01-
dc.identifier.issn0924-4247-
dc.identifier.urihttps://hdl.handle.net/2445/220398-
dc.description.abstractMicrofluidics represents a very promising technological solution for conducting massive biological experiments. However, the difficulty of managing the amount of information available often precludes the wide potential offered. Using machine learning, we aim to accelerate microfluidics uptake and lead to quantitative and reliable findings. In this work, we propose complementing microfluidics with machine learning (MLM) approaches to enhance the diagnostic capability of lab-on-chip devices. The introduction of data analysis methodologies within the deep learning framework corroborates the possibility of encoding cell morphology beyond the standard cell appearance. The proposed MLM platform is used in a diagnostic test for blood diseases in murine RBC samples in a dedicated microfluidics device in flow. The lack of plasticity of RBCs in Pyruvate Kinase Disease (PKD) is measured massively by recognizing the shape deformation in RBCs walking in a forest of pillars within the chip. Very high accuracy results, far over 85 %, in recognizing PKD from control RBCs either in simulated and in real experiments demonstrate the effectiveness of the platform.-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.sna.2023.114187-
dc.relation.ispartofSensors and Actuators A: Physical, 2023-
dc.relation.urihttps://doi.org/10.1016/j.sna.2023.114187-
dc.rightscc-by-nc-nd (c) Elsevier, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationAprenentatge profund-
dc.subject.classificationImmunitat cel·lular-
dc.subject.classificationMicrofluídica-
dc.subject.otherDeep learning (Machine learning)-
dc.subject.otherCellular immunity-
dc.subject.otherMicrofluidics-
dc.titleMachine learning microfluidic based platform: Integration of Lab-on-Chip devices and data analysis algorithms for red blood cell plasticity evaluation in Pyruvate Kinase Disease monitoring-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec732168-
dc.date.updated2025-04-10T16:06:24Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
259154.pdf2.59 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons