Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/220655
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Miró-Roig, Rosa M. (Rosa Maria) | - |
dc.contributor.author | Salat Moltó, Martí | - |
dc.date.accessioned | 2025-04-28T07:06:30Z | - |
dc.date.available | 2025-04-28T07:06:30Z | - |
dc.date.issued | 2023-07-12 | - |
dc.identifier.issn | 1660-5446 | - |
dc.identifier.uri | https://hdl.handle.net/2445/220655 | - |
dc.description.abstract | Let $(X, L)$ be a polarized smooth projective variety. For any basepoint-free linear system $\mathcal{L}_V$ with $V \subset \mathrm{H}^0\left(X, \mathcal{O}_X(L)\right)$, we consider the syzygy bundle $M_V$ as the kernel of the evaluation map $V \otimes \mathcal{O}_X \rightarrow \mathcal{O}_X(L)$. The purpose of this article is twofold. First, we assume that $M_V$ is $L$-stable and prove that, in a wide family of projective varieties, it represents a smooth point $\left[M_V\right]$ in the corresponding moduli space $\mathcal{M}$. We compute the dimension of the irreducible component of $\mathcal{M}$ passing through $\left[M_V\right]$ and whether it is an isolated point. It turns out that the rigidness of $\left[M_V\right]$ is closely related to the completeness of the linear system $\mathcal{L}_V$. In the second part of the paper, we address a question posed by Brenner regarding the stability of $M_V$ when $V$ is general enough. We answer this question for a large family of polarizations of $X=\mathbb{P}^m \times \mathbb{P}^n$. | - |
dc.format.extent | 21 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Springer Verlag | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1007/s00009-023-02456-5 | - |
dc.relation.ispartof | Mediterranean Journal of Mathematics, 2023, vol. 20 | - |
dc.relation.uri | https://doi.org/10.1007/s00009-023-02456-5 | - |
dc.rights | cc by (c) Rosa Maria Miró-Roig et al., 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Mòduls (Àlgebra) | - |
dc.subject.classification | Àlgebra homològica | - |
dc.subject.classification | Superfícies algebraiques | - |
dc.subject.other | Modules (Algebra) | - |
dc.subject.other | Homological algebra | - |
dc.subject.other | Algebraic surfaces | - |
dc.title | Syzygy bundles of non-complete linear systems: stability and rigidness | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 743683 | - |
dc.date.updated | 2025-04-28T07:06:30Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
845369.pdf | 461.63 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License