Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220655
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMiró-Roig, Rosa M. (Rosa Maria)-
dc.contributor.authorSalat Moltó, Martí-
dc.date.accessioned2025-04-28T07:06:30Z-
dc.date.available2025-04-28T07:06:30Z-
dc.date.issued2023-07-12-
dc.identifier.issn1660-5446-
dc.identifier.urihttps://hdl.handle.net/2445/220655-
dc.description.abstractLet $(X, L)$ be a polarized smooth projective variety. For any basepoint-free linear system $\mathcal{L}_V$ with $V \subset \mathrm{H}^0\left(X, \mathcal{O}_X(L)\right)$, we consider the syzygy bundle $M_V$ as the kernel of the evaluation map $V \otimes \mathcal{O}_X \rightarrow \mathcal{O}_X(L)$. The purpose of this article is twofold. First, we assume that $M_V$ is $L$-stable and prove that, in a wide family of projective varieties, it represents a smooth point $\left[M_V\right]$ in the corresponding moduli space $\mathcal{M}$. We compute the dimension of the irreducible component of $\mathcal{M}$ passing through $\left[M_V\right]$ and whether it is an isolated point. It turns out that the rigidness of $\left[M_V\right]$ is closely related to the completeness of the linear system $\mathcal{L}_V$. In the second part of the paper, we address a question posed by Brenner regarding the stability of $M_V$ when $V$ is general enough. We answer this question for a large family of polarizations of $X=\mathbb{P}^m \times \mathbb{P}^n$.-
dc.format.extent21 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00009-023-02456-5-
dc.relation.ispartofMediterranean Journal of Mathematics, 2023, vol. 20-
dc.relation.urihttps://doi.org/10.1007/s00009-023-02456-5-
dc.rightscc by (c) Rosa Maria Miró-Roig et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationMòduls (Àlgebra)-
dc.subject.classificationÀlgebra homològica-
dc.subject.classificationSuperfícies algebraiques-
dc.subject.otherModules (Algebra)-
dc.subject.otherHomological algebra-
dc.subject.otherAlgebraic surfaces-
dc.titleSyzygy bundles of non-complete linear systems: stability and rigidness-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec743683-
dc.date.updated2025-04-28T07:06:30Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
845369.pdf461.63 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons