Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/220745
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vafaei, Paniz | - |
dc.contributor.author | Kodu, Margus | - |
dc.contributor.author | Alles, Harry | - |
dc.contributor.author | Kiisk, Valter | - |
dc.contributor.author | Casals Guillén, Olga | - |
dc.contributor.author | Prades García, Juan Daniel | - |
dc.contributor.author | Jaaniso, Raivo | - |
dc.date.accessioned | 2025-04-30T16:27:17Z | - |
dc.date.available | 2025-04-30T16:27:17Z | - |
dc.date.issued | 2025-01-01 | - |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.uri | https://hdl.handle.net/2445/220745 | - |
dc.description.abstract | Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO2. Applying ultraviolet (380 nm) light with quantum energy above the TiO2 bandgap effectively enhanced the sensor responses. Low (<1 μW optical) power operation of the device was demonstrated by measuring NO2 gas at low concentrations, which is typical in air quality monitoring, with an estimated limit of detection < 0.1 ppb. The gas response amplitudes remained nearly constant over the studied light intensity range (1–150 mW/cm2) owing to the balance between the photoinduced adsorption and desorption processes of the gas molecules. The rates of both processes followed an approximately square-root dependence on light intensity, plausibly because the electron–hole recombination of photoinduced charge carriers is the primary rate-limiting factor. These results pave the way for integrating 2D materials with micro-LED arrays as a feasible path to advanced electronic noses. | - |
dc.format.extent | 13 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | MDPI | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.3390/s25020382 | - |
dc.relation.ispartof | Sensors, 2025, vol. 25, num.2 | - |
dc.relation.uri | https://doi.org/10.3390/s25020382 | - |
dc.rights | cc-by (c) Vafaei, P. et al., 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.source | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) | - |
dc.subject.classification | Grafè | - |
dc.subject.classification | Detectors de gasos | - |
dc.subject.classification | Diòxid de titani | - |
dc.subject.other | Graphene | - |
dc.subject.other | Gas detectors | - |
dc.subject.other | Titanium dioxide | - |
dc.title | Graphene/TiO2 Heterostructure Integrated with a Micro-Lightplate for Low-Power NO2 Gas Detection | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 756698 | - |
dc.date.updated | 2025-04-30T16:27:17Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
887214.pdf | 3.14 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License