Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220745
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVafaei, Paniz-
dc.contributor.authorKodu, Margus-
dc.contributor.authorAlles, Harry-
dc.contributor.authorKiisk, Valter-
dc.contributor.authorCasals Guillén, Olga-
dc.contributor.authorPrades García, Juan Daniel-
dc.contributor.authorJaaniso, Raivo-
dc.date.accessioned2025-04-30T16:27:17Z-
dc.date.available2025-04-30T16:27:17Z-
dc.date.issued2025-01-01-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://hdl.handle.net/2445/220745-
dc.description.abstractLow-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO2. Applying ultraviolet (380 nm) light with quantum energy above the TiO2 bandgap effectively enhanced the sensor responses. Low (<1 μW optical) power operation of the device was demonstrated by measuring NO2 gas at low concentrations, which is typical in air quality monitoring, with an estimated limit of detection < 0.1 ppb. The gas response amplitudes remained nearly constant over the studied light intensity range (1–150 mW/cm2) owing to the balance between the photoinduced adsorption and desorption processes of the gas molecules. The rates of both processes followed an approximately square-root dependence on light intensity, plausibly because the electron–hole recombination of photoinduced charge carriers is the primary rate-limiting factor. These results pave the way for integrating 2D materials with micro-LED arrays as a feasible path to advanced electronic noses.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/s25020382-
dc.relation.ispartofSensors, 2025, vol. 25, num.2-
dc.relation.urihttps://doi.org/10.3390/s25020382-
dc.rightscc-by (c) Vafaei, P. et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationGrafè-
dc.subject.classificationDetectors de gasos-
dc.subject.classificationDiòxid de titani-
dc.subject.otherGraphene-
dc.subject.otherGas detectors-
dc.subject.otherTitanium dioxide-
dc.titleGraphene/TiO2 Heterostructure Integrated with a Micro-Lightplate for Low-Power NO2 Gas Detection-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec756698-
dc.date.updated2025-04-30T16:27:17Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
887214.pdf3.14 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons