Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/220770
Title: | A large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations |
Author: | Garrucho, Lidia Kushibar, Kaisar Reidel, Claire-Anne Joshi, Smitri Osuala, Richard Tsirikoglou, Apostolia Bobowicz, Maciej Riego, Javier del Catanese, Alesandro Gwoździewicz, Katarzyna Cosaka, Maria Laura Abo-Elhoda, Pasant M. Tantawy, Sara W. Sakrana, Shorouq S. Shawky-Abdelfatah, Norhan O. Abdo-Salem, Amr Muhammad Kozana, Androniki Divjak, Eugen Ivanac, Gordana Nikiforaki, Katerina Klontzas, Michail E. García Dosdá, Rosa Gulsun-Akpinar, Meltem Lafcı, Oğuz Mann, Ritse Martín-Isla, Carlos Prior, Fred Marias, Kostas Starmans, Martijn P. A. Strand, Fredrik Díaz, Oliver Igual Muñoz, Laura Lekadir, Karim, 1977- |
Keywords: | Imatges per ressonància magnètica Càncer de mama Intel·ligència artificial Magnetic resonance imaging Breast cancer Artificial intelligence |
Issue Date: | 19-Mar-2025 |
Publisher: | Springer Nature |
Abstract: | <span style="color:rgb( 34 , 34 , 34 )">Artificial Intelligence (AI) research in breast cancer Magnetic Resonance Imaging (MRI) faces challenges due to limited expert-labeled segmentations. To address this, we present a multicenter dataset of 1506 pre-treatment T1-weighted dynamic contrast-enhanced MRI cases, including expert annotations of primary tumors and non-mass-enhanced regions. The dataset integrates imaging data from four collections in The Cancer Imaging Archive (TCIA), where only 163 cases with expert segmentations were initially available. To facilitate the annotation process, a deep learning model was trained to produce preliminary segmentations for the remaining cases. These were subsequently corrected and verified by 16 breast cancer experts (averaging 9 years of experience), creating a fully annotated dataset. Additionally, the dataset includes 49 harmonized clinical and demographic variables, as well as pre-trained weights for a baseline nnU-Net model trained on the annotated data. This resource addresses a critical gap in publicly available breast cancer datasets, enabling the development, validation, and benchmarking of advanced deep learning models, thus driving progress in breast cancer diagnostics, treatment response prediction, and personalized care.</span> |
Note: | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41597-025-04707-4 |
It is part of: | Scientific Data, 2025, vol. 12 |
URI: | https://hdl.handle.net/2445/220770 |
Related resource: | https://doi.org/https://doi.org/10.1038/s41597-025-04707-4 |
ISSN: | 2052-4463 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
892269.pdf | 3.19 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License