Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220770
Title: A large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations
Author: Garrucho, Lidia
Kushibar, Kaisar
Reidel, Claire-Anne
Joshi, Smitri
Osuala, Richard
Tsirikoglou, Apostolia
Bobowicz, Maciej
Riego, Javier del
Catanese, Alesandro
Gwoździewicz, Katarzyna
Cosaka, Maria Laura
Abo-Elhoda, Pasant M.
Tantawy, Sara W.
Sakrana, Shorouq S.
Shawky-Abdelfatah, Norhan O.
Abdo-Salem, Amr Muhammad
Kozana, Androniki
Divjak, Eugen
Ivanac, Gordana
Nikiforaki, Katerina
Klontzas, Michail E.
García Dosdá, Rosa
Gulsun-Akpinar, Meltem
Lafcı, Oğuz
Mann, Ritse
Martín-Isla, Carlos
Prior, Fred
Marias, Kostas
Starmans, Martijn P. A.
Strand, Fredrik
Díaz, Oliver
Igual Muñoz, Laura
Lekadir, Karim, 1977-
Keywords: Imatges per ressonància magnètica
Càncer de mama
Intel·ligència artificial
Magnetic resonance imaging
Breast cancer
Artificial intelligence
Issue Date: 19-Mar-2025
Publisher: Springer Nature
Abstract: <span style="color:rgb( 34 , 34 , 34 )">Artificial Intelligence (AI) research in breast cancer Magnetic Resonance Imaging (MRI) faces challenges due to limited expert-labeled segmentations. To address this, we present a multicenter dataset of 1506 pre-treatment T1-weighted dynamic contrast-enhanced MRI cases, including expert annotations of primary tumors and non-mass-enhanced regions. The dataset integrates imaging data from four collections in The Cancer Imaging Archive (TCIA), where only 163 cases with expert segmentations were initially available. To facilitate the annotation process, a deep learning model was trained to produce preliminary segmentations for the remaining cases. These were subsequently corrected and verified by 16 breast cancer experts (averaging 9 years of experience), creating a fully annotated dataset. Additionally, the dataset includes 49 harmonized clinical and demographic variables, as well as pre-trained weights for a baseline nnU-Net model trained on the annotated data. This resource addresses a critical gap in publicly available breast cancer datasets, enabling the development, validation, and benchmarking of advanced deep learning models, thus driving progress in breast cancer diagnostics, treatment response prediction, and personalized care.</span>
Note: Reproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41597-025-04707-4
It is part of: Scientific Data, 2025, vol. 12
URI: https://hdl.handle.net/2445/220770
Related resource: https://doi.org/https://doi.org/10.1038/s41597-025-04707-4
ISSN: 2052-4463
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
892269.pdf3.19 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons