Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/220776
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guercetti, Julian | - |
dc.contributor.author | Alorda, Marc | - |
dc.contributor.author | Sappia, Luciano | - |
dc.contributor.author | Galve, Roger | - |
dc.contributor.author | Duran-Corbera, Macarena | - |
dc.contributor.author | Pulido, Daniel | - |
dc.contributor.author | Berardi, Ginevra | - |
dc.contributor.author | Royo, Miriam | - |
dc.contributor.author | Lacorna, Alicia | - |
dc.contributor.author | Muñoz Gutiérrez, José | - |
dc.contributor.author | Padilla, Eduardo | - |
dc.contributor.author | Castañeda, Silvia | - |
dc.contributor.author | Sendra, Elena | - |
dc.contributor.author | Horcajada Gallego, Juan Pablo | - |
dc.contributor.author | Gutiérrez Gálvez, Agustín | - |
dc.contributor.author | Marco Colás, Santiago | - |
dc.contributor.author | Salvador, J. Pablo | - |
dc.contributor.author | Marco, M. Pilar | - |
dc.date.accessioned | 2025-05-02T14:33:07Z | - |
dc.date.available | 2025-05-02T14:33:07Z | - |
dc.date.issued | 2025-02-21 | - |
dc.identifier.issn | 2575-9108 | - |
dc.identifier.uri | https://hdl.handle.net/2445/220776 | - |
dc.description.abstract | A multiplexed microarray chip (Immuno-μSARS2) aiming at providing information on the prognosis of the COVID-19 has been developed. The diagnostic technology records information related to the profile of the immunological response of patients infected by the SARS-CoV-2 virus. The diagnostic technology delivers information on the avidity of the sera against 28 different peptide epitopes and 7 proteins printed on a 25 mm2 area of a glass slide. The peptide epitopes (12–15 mer) derived from structural proteins (Spike and Nucleocapsid) have been rationally designed, synthesized, and used to develop Immuno-μSARS2 as a multiplexed and high-throughput fluorescent microarray platform. The analysis of 755 human serum samples (321 from PCR+ patients; 288 from PCR– patients; 115 from prepandemic individuals and classified as hospitalized, admitted to intensive-care unit (ICU), and exitus) from three independent cohorts has shown that the chips perform with a 98% specificity and 91% sensitivity identifying RT-PCR+ patients. Computational analysis utilized to correlate the immunological signatures of the samples analyzed indicate significant prediction rates against exitus conditions with 82% accuracy, ICU admissions with 80% accuracy, and 73% accuracy over hospitalization requirement compared to asymptomatic patients’ fingerprints. The miniaturized microarray chip allows simultaneous determination of 96 samples (24 samples/slide) in 90 min and requires only 10 μL of sera. The diagnostic approach presented for the first time here could have a great value in assisting clinicians in decision-making based on the information provided by the Immuno-μSARS2 regarding progression of the disease and could be easily implemented in diagnostics of other infectious diseases. | - |
dc.format.extent | 14 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1021/acsptsci.4c00727 | - |
dc.relation.ispartof | American Chemical Society, 2025, vol. 8, num.3 | - |
dc.relation.uri | https://doi.org/10.1021/acsptsci.4c00727 | - |
dc.rights | cc-by (c) Guercetti, Julian et al., 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) | - |
dc.subject.classification | COVID-19 | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Pèptids | - |
dc.subject.other | COVID-19 | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Peptides | - |
dc.title | Immuno-μSARS2 Chip: A Peptide-Based Microarray to Assess COVID-19 Prognosis Based on Immunological Fingerprints | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 757465 | - |
dc.date.updated | 2025-05-02T14:33:07Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
890432.pdf | 4.96 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License