Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220829
Title: Binary Vision: The Mass Distribution of Merging Binary Black Holes via Iterative Density Estimation
Author: Sadiq, Jam
Dent, Thomas
Gieles, Mark
Keywords: Ones gravitacionals
Astrofísica
Forats negres (Astronomia)
Gravitational waves
Astrophysics
Black holes (Astronomy)
Issue Date: 2024
Publisher: Institute of Physics (IOP)
Abstract: Binary black hole (BBH) systems detected via gravitational-wave emission are a recently opened astrophysicalfrontier with many unknowns and uncertainties. Accurate reconstruction of the binary distribution with as fewassumptions as possible is desirable for inference of formation channels and environments. Most populationanalyses have, though, assumed a power law in binary mass ratio q, and/or assumed a universal q distributionregardless of primary mass. Methods based on kernel density estimation allow us to dispense with suchassumptions and directly estimate the joint binary mass distribution. We deploy a self-consistent iterative methodto estimate this full BBH mass distribution, finding local maxima in primary mass consistent with previousinvestigations and a secondary mass distribution with a partly independent structure, inconsistent both with apower law and with a constant function of q. We find a weaker preference for near-equal-mass binaries than inmost previous investigations; instead, the secondary mass has its own “spectral lines” at slightly lower values thanthe primary, and we observe an anticorrelation between primary and secondary masses around the ∼10 Me peak.
Note: Reproducció del document publicat a: https://doi.org/10.3847/1538-4357/ad0ce6
It is part of: Astrophysical Journal, 2024
URI: https://hdl.handle.net/2445/220829
Related resource: https://doi.org/10.3847/1538-4357/ad0ce6
ISSN: 0004-637X
Appears in Collections:Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
888522.pdf1.99 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.