Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/220838
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNaranjo del Val, Juan Carlos-
dc.contributor.authorSolà Cava, Elena-
dc.date.accessioned2025-05-06T07:11:26Z-
dc.date.available2025-05-06T07:11:26Z-
dc.date.issued2024-06-10-
dc.identifier.urihttps://hdl.handle.net/2445/220838-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Juan Carlos Naranjo del Valca
dc.description.abstractIn this work we are going to study the automorphisms of compact non-hyperelliptic Riemann surfaces. In particular, we are going deeply analyse the surfaces of genus three. For such surfaces of genus greater than one, the automorphisms group is finite, and, as a matter of fact, we have a formula who establishes an upper limit on the cardinality of the group depending on the genus of the surface. This formula was found by Hurwitz, and it tells us that the number of automorphisms of a Riemann surface of genus g is finite and bounded by 84( $g − 1$). This upper bound can not be improved in general, as it is reached for some cases.ca
dc.format.extent58 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Elena Solà Cava, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationAutomorfismesca
dc.subject.classificationCorbes algebraiques-
dc.subject.classificationGrups de permutacionsca
dc.subject.classificationSuperfícies de Riemannca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherAutomorphismsen
dc.subject.otherAlgebraic curves-
dc.subject.otherPermutation groupsen
dc.subject.otherRiemann surfacesen
dc.subject.otherBachelor's thesesen
dc.titleAutomorphisms groups of genus three Riemann surfacesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_Solà_Cava_Elena.pdfMemòria1.85 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons