Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/221121
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Galan, A. | - |
dc.contributor.author | Vernardos, G. | - |
dc.contributor.author | Peel, A. | - |
dc.contributor.author | Courbin, Frédéric | - |
dc.contributor.author | Starck, J.-L. | - |
dc.date.accessioned | 2025-05-19T17:24:13Z | - |
dc.date.available | 2025-05-19T17:24:13Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 0004-6361 | - |
dc.identifier.uri | https://hdl.handle.net/2445/221121 | - |
dc.description.abstract | Modeling the mass distribution of galaxy-scale strong gravitational lenses is a task of increasing difficulty. The high-resolution and depth of imaging data now available render simple analytical forms ineffective at capturing lens structures spanning a large range in spatial scale, mass scale, and morphology. In this work, we address the problem with a novel multiscale method based on wavelets. We tested our method on simulated Hubble Space Telescope (HST) imaging data of strong lenses containing the following different types of mass substructures making them deviate from smooth models: (1) a localized small dark matter subhalo, (2) a Gaussian random field (GRF) that mimics a nonlocalized population of subhalos along the line of sight, and (3) galaxy-scale multipoles that break elliptical symmetry. We show that wavelets are able to recover all of these structures accurately. This is made technically possible by using gradient-informed optimization based on automatic differentiation over thousands of parameters, which also allow us to sample the posterior distributions of all model parameters simultaneously. By construction, our method merges the two main modeling paradigms – analytical and pixelated – with machine-learning optimization techniques into a single modular framework. It is also well-suited for the fast modeling of large samples of lenses. | - |
dc.format.extent | 24 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | - | |
dc.publisher | EDP Sciences | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1051/0004-6361/202244464 | - |
dc.relation.ispartof | Astronomy & Astrophysics, 2022, vol. 668, num.A155 | - |
dc.relation.uri | https://doi.org/10.1051/0004-6361/202244464 | - |
dc.rights | (c) The European Southern Observatory (ESO), 2022 | - |
dc.source | Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB)) | - |
dc.subject.classification | Galàxies | - |
dc.subject.classification | Matèria fosca (Astronomia) | - |
dc.subject.classification | Gravitació | - |
dc.subject.other | Galaxies | - |
dc.subject.other | Dark matter (Astronomy) | - |
dc.subject.other | Gravitation | - |
dc.title | Using wavelets to capture deviations from smoothness in galaxy-scale strong lenses | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 756095 | - |
dc.date.updated | 2025-05-19T17:24:20Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
884465.pdf | 4.71 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.