Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221150
Title: Using clinical data for breast cancer risk prediction and follow-up
Author: Hernández Antón, Sergio
Director/Tutor: Díaz, Oliver
Keywords: Càncer de mama
Medicina preventiva
Aprenentatge automàtic
Treballs de fi de màster
Breast cancer
Preventive medicine
Machine learning
Master's thesis
Issue Date: 17-Jan-2025
Abstract: Breast cancer remains one of the leading causes of cancer-related morbidity and mortality worldwide, requiring robust methodologies for early risk prediction, recurrence forecasting, and survival analysis. This thesis defines a comprehensive pipeline for breast cancer risk prediction, emphasizing both technical precision and clinical relevance. The proposed framework integrates multiple components: data acquisition, preprocessing, feature extraction, model selection, interpretability, and explainability, in order to ensure accurate, transparent, and actionable outcomes. Overall, this thesis aims to advance the field of breast cancer prediction by delivering a robust, interpretable, and clinically relevant pipeline, aligning with the important goal of improving patient outcomes through early and precise detection. Additionally, in an attempt to make this thesis more reachable, we add a feature dictionary for both used datasets in Appendix A. On top of that, we also share the project in the shape of a GitHub repository, so that people can take profit of this research if at all possible. We also include a guide on its structure in Appendix B.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Oliver Díaz
URI: https://hdl.handle.net/2445/221150
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfm_Hernández_Antón_Sergio.pdfMemòria1.31 MBAdobe PDFView/Open
code.zipCodi font676.4 kBzipView/Open


This item is licensed under a Creative Commons License Creative Commons