Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221183
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorClop, Albert-
dc.contributor.authorCastanyer Bibiloni, Francesc Josep-
dc.date.accessioned2025-05-23T07:53:13Z-
dc.date.available2025-05-23T07:53:13Z-
dc.date.issued2025-01-09-
dc.identifier.urihttps://hdl.handle.net/2445/221183-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Any: 2025. Director: Albert Clopca
dc.description.abstractThis thesis investigates the two-dimensional incompressible Euler equations under smooth initial data, focusing on three formulations: 1. the classical Euler system, 2. the vorticity-stream forumlation, 3. the integrodifferential (particle-trajectory) formulation. In Chapter 1, we first show that these three viewpoints are mathematically equivalent. We also develop core background material on vector fields, flows, and singular integral operators. These tools, particularly the singular integral operator theory, lay the groundwork for the vorticity-stream and integrodifferential formulations used in subsequent chapters. Chapter 2 establishes the local-in-time existence and uniqueness of solutions when the initial vorticity lies in a Hölder space $C^\gamma$ (with $\gamma \in(0,1)$ ). By formulating the problem in terms of the integrodifferential formulation, we show that the relevant operator is locally Lipschitz in an appropriate Banach space. Applying a Picard-Lindelöf-type argument then yields the desired local well-posedness result. Key technical ingredients include singular integral estimates and careful composition bounds in Hölder spaces. Finally, Chapter 3 addresses the global nature of these solutions. In two dimensions, the vorticity remains constant along particle trajectories and thus stays bounded for all time, preventing finite-time blow-up. Using a method inspired by the analysis of Beale, Kato, and Majda, we show that bounding the vorticity's supremum norm also bounds the velocity gradient, which in turn guarantees global existence. Thus, for sufficiently smooth initial vorticity in 2D, the solutions to the Euler equations extend indefinitely in time and remain regular.en
dc.format.extent43 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc by-nc-nd (c) Francesc Josep Castanyer Bibiloni, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationEquacions en derivades parcialscat
dc.subject.classificationTeoria del transportcat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherPartial differential equationseng
dc.subject.otherTransport theoryeng
dc.subject.otherMaster's thesiseng
dc.title2D Euler system for Hölder continuous vorticitiesca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_castanyer_bibiloni_francesc_josep.pdf718.92 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons