Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221203
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCardona Aguilar, Robert-
dc.contributor.authorVelasco Soldevila, Eduard-
dc.date.accessioned2025-05-26T09:51:02Z-
dc.date.available2025-05-26T09:51:02Z-
dc.date.issued2025-01-09-
dc.identifier.urihttps://hdl.handle.net/2445/221203-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Any: 2025. Director: Robert Cardona Aguilarca
dc.description.abstractThis master’s thesis provides an introduction to contact topology, with the primary objective of proving Martinet’s Theorem, which asserts that every closed, connected 3-manifold admits a contact structure. The proof heavily relies on the Lickorish-Wallace Theorem, which states that any such 3-manifold can be obtained from $S^{3}$ via a finite sequence of Dehn surgeries. The thesis explores key concepts in contact topology, such as contact structures, Darboux’s Theorem, and Gray stability. A complete proof of the Lickorish-Wallace Theorem is given before focusing on the detailed proof of Martinet’s Theorem, highlighting the ubiquity of contact structures in 3-manifolds.ca
dc.format.extent47 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc by-nc-nd (c) Eduard Velasco Soldevila, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationTopologiacat
dc.subject.classificationTopologia diferencialcat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherTopologyeng
dc.subject.otherDifferential topologyeng
dc.subject.otherMaster's thesiseng
dc.titleIntroduction to contact topologyca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
tfm_velasco_soldevila_eduard.pdfMemòria4.43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons