Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221320
Title: Dualities of self-dual nonlinear electrodynamics
Author: Russo, J. G. (Jorge Guillermo)
Townsend, Paul K.
Keywords: Electrodinàmica
Camps de galga (Física)
Electrodynamics
Gauge fields (Physics)
Issue Date: 2024
Publisher: Springer Verlag
Abstract: For any causal nonlinear electrodynamics theory that is “self-dual” (electromagnetic U(1)-duality invariant), the Legendre-dual pair of Lagrangian and Hamiltonian densities {L, H} are constructed from functions {ℓ, h} on R + related to a particle-mechanics Lagrangian and Hamiltonian. We show how a ‘duality’ relating ℓ to h implies that L and H are related by a simple map between appropriate pairs of variables. We also discuss Born’s “Legendre self-duality” and implications of a new “Φ-parity” duality. Our results are illustrated with many examples. 
Note: Reproducció del document publicat a: https://doi.org/10.1007/JHEP09(2024)107
It is part of: Journal of High Energy Physics, 2024, vol. 2024, num.107
URI: https://hdl.handle.net/2445/221320
Related resource: https://doi.org/10.1007/JHEP09(2024)107
ISSN: 1126-6708
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
889242.pdf663.38 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons