Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/221320
Title: | Dualities of self-dual nonlinear electrodynamics |
Author: | Russo, J. G. (Jorge Guillermo) Townsend, Paul K. |
Keywords: | Electrodinàmica Camps de galga (Física) Electrodynamics Gauge fields (Physics) |
Issue Date: | 2024 |
Publisher: | Springer Verlag |
Abstract: | For any causal nonlinear electrodynamics theory that is “self-dual” (electromagnetic U(1)-duality invariant), the Legendre-dual pair of Lagrangian and Hamiltonian densities {L, H} are constructed from functions {ℓ, h} on R + related to a particle-mechanics Lagrangian and Hamiltonian. We show how a ‘duality’ relating ℓ to h implies that L and H are related by a simple map between appropriate pairs of variables. We also discuss Born’s “Legendre self-duality” and implications of a new “Φ-parity” duality. Our results are illustrated with many examples. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/JHEP09(2024)107 |
It is part of: | Journal of High Energy Physics, 2024, vol. 2024, num.107 |
URI: | https://hdl.handle.net/2445/221320 |
Related resource: | https://doi.org/10.1007/JHEP09(2024)107 |
ISSN: | 1126-6708 |
Appears in Collections: | Articles publicats en revistes (Física Quàntica i Astrofísica) Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
889242.pdf | 663.38 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License