Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221443
Title: Nonlinear transport equations and quasiconformal maps
Author: Clop, Albert
Sengupta, Banhirup
Keywords: Teoria del transport
Aplicacions quasiconformes
Equacions en derivades parcials
Problemes de valor inicial
Transport theory
Quasiconformal mappings
Partial differential equations
Initial value problems
Issue Date: 16-May-2023
Publisher: Finnish Mathematical Society
Abstract: We prove existence of solutions to a nonlinear transport equation in the plane,for which the velocity field is obtained as the convolution ofthe classical Cauchy kernel with theunknown. Even though the initial datum is bounded and compactly supported, the velocity fieldmay have unbounded divergence. The proof is based on the compactness property of quasiconformalmappings
Note: Reproducció del document publicat a: https://doi.org/https://doi.org/10.54330/afm.130026
It is part of: Annales Fennici Mathematici, 2023, vol. 48, num.1, p. 375-387
URI: https://hdl.handle.net/2445/221443
Related resource: https://doi.org/https://doi.org/10.54330/afm.130026
ISSN: 2737-0690
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
894362.pdf216.27 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons