Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221444
Title: Higher differentiability results for solutions to a class of non-homogeneous elliptic problems under sub-quadratic growth conditions
Author: Clop, Albert
Gentile, Andrea
Passarelli di Napoli, Antonia
Keywords: Funcions convexes
Equacions diferencials el·líptiques
Teoria de control
Convex functions
Elliptic differential equations
Control theory
Issue Date: 29-May-2023
Publisher: World Scientific Publishing
Abstract: We prove a sharp higher differentiability result for local minimizers of functionals of the form $$ \mathscr{F}(w, \Omega)=\int_{\Omega}[F(x, D w(x))-f(x) \cdot w(x)] d x $$ with non-autonomous integrand $F(x, \xi)$ which is convex with respect to the gradient variable, under $p$-growth conditions, with $1<p<2$. The main novelty here is that the results are obtained assuming that the partial map $x \mapsto D_{\xi} F(x, \xi)$ has weak derivatives in some Lebesgue space $L^q$ and the datum $f$ is assumed to belong to a suitable Lebesgue space $L^r$. We also prove that it is possible to weaken the assumption on the datum $f$ and on the map $x \mapsto D_{\xi} F(x, \xi)$, if the minimizers are assumed to be a priori bounded.
Note: Reproducció del document publicat a: https://doi.org/https://doi.org/10.1142/S166436072350008X
It is part of: Bulletin Of Mathematical Sciences, 2023, vol. 13, num.2
URI: https://hdl.handle.net/2445/221444
Related resource: https://doi.org/https://doi.org/10.1142/S166436072350008X
ISSN: 1664-3607
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
894364.pdf580.41 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons