Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221676
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBenavent, Diego-
dc.contributor.authorCarmona Ortells, Loreto-
dc.contributor.authorGarcía Llorente, José Francisco-
dc.contributor.authorMontoro, Maria-
dc.contributor.authorRamirez, Susan-
dc.contributor.authorOtón Sánchez, Teresa-
dc.contributor.authorLoza, Estibaliz-
dc.contributor.authorGómez Centeno, Antonio-
dc.date.accessioned2025-06-20T10:51:22Z-
dc.date.available2025-06-20T10:51:22Z-
dc.date.issued2025-04-07-
dc.identifier.issn1437-160X-
dc.identifier.urihttps://hdl.handle.net/2445/221676-
dc.description.abstractTo analyse the types and applications of artificial intelligence (AI) technologies to predict treatment response in rheumatoid arthritis (RA) and spondyloarthritis (SpA). A comprehensive search in Medline, Embase, and Cochrane databases (up to August 2024) identified studies using AI to predict treatment response in RA and SpA. Data on study design, AI methodologies, data sources, and outcomes were extracted and synthesized. Findings were summarized descriptively. Of the 4257 articles identified, 89 studies met the inclusion criteria (74 on RA, 7 on SpA, 4 on Psoriatic Arthritis and 4 a mix of them). AI models primarily employed supervised machine learning techniques (e.g., random forests, support vector machines), unsupervised clustering, and deep learning. Data sources included electronic medical records, clinical biomarkers, genetic and proteomic data, and imaging. Predictive performance varied by methodology, with accuracy ranging from 60 to 70% and AUC values between 0.63 and 0.92. Multi-omics approaches and imaging-based models showed promising results in predicting responses to biologic DMARDs and JAK inhibitors but methodological heterogeneity limited generalizability. AI technologies exhibit substantial potential in predicting treatment responses in RA and SpA, enhancing personalized medicine. However, challenges such as methodological variability, data integration, and external validation remain. Future research should focus on refining AI models, ensuring their robustness across diverse patient populations, and facilitating their integration into clinical practice to optimize therapeutic decision-making in rheumatology.-
dc.format.extent24 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Science and Business Media LLC-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00296-025-05825-3-
dc.relation.ispartofRheumatology International, 2025, vol. 45, num. 4-
dc.relation.urihttps://doi.org/10.1007/s00296-025-05825-3-
dc.rightscc-by-nc-nd (c) Benavent et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))-
dc.subject.classificationArtritis reumatoide-
dc.subject.classificationIntel·ligència computacional-
dc.subject.classificationTerapèutica-
dc.subject.otherRheumatoid arthritis-
dc.subject.otherComputational intelligence-
dc.subject.otherTherapeutics-
dc.titleArtificial intelligence to predict treatment response in rheumatoid arthritis and spondyloarthritis: a scoping review-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2025-06-11T09:57:51Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid40192881-
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
s00296-025-05825-3.pdf1.49 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons