Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221737
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFontoura, Leonardo F-
dc.contributor.authorNascimento, Daniel Luiz de Mattos-
dc.contributor.authorVieira Neto, Julio-
dc.contributor.authorCaiado, Rodrigo Goyannes Gusmão-
dc.date.accessioned2025-06-25T10:28:22Z-
dc.date.available2025-06-25T10:28:22Z-
dc.date.issued2025-06-01-
dc.identifier.issn0160-791X-
dc.identifier.urihttps://hdl.handle.net/2445/221737-
dc.description.abstractConsidering the mounting request for viable energy solutions emphasising sustainability, this study addresses the context by positioning Generative Artificial Intelligence (Gen-AI) as a pivotal remedy for improved process efficiency. Concerns about its uncontrolled use and ethical implications prompted a thorough examination of problems and gaps in this domain. This study innovates by positioning Gen-AI as a critical solution for improving energy efficiency amidst rising demand for sustainable energy at the operation and supply chain management levels. Based on technological determinism, it introduces an Energy Gen-AI Technology Framework (EnGen-AI) that integrates Gen-AI, energy efficiency, Business Ethics (BE), and Corporate Social Responsibility (CSR) principles for implementing Gen-AI to enhance sustainable energy management. The methodology includes a scoping review, a multi-criteria analysis, and a technology framework. The study harmonises BE-CSR with Gen-AI practices, offering essential guidance for management implementing Gen-AI in sustainable energy solutions whilst observing its impacts on ethical and social aspects.-
dc.format.extent19 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.techsoc.2025.102847-
dc.relation.ispartofTechnology In Society, 2025, vol. 81, p. 1-19-
dc.relation.urihttps://doi.org/10.1016/j.techsoc.2025.102847-
dc.rightscc-by-nc-nd (c) Elsevier, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Empresa)-
dc.subject.classificationEmpreses-
dc.subject.classificationPolítica energètica-
dc.subject.classificationTecnologia-
dc.subject.classificationÈtica-
dc.subject.classificationGestió financera-
dc.subject.otherBusiness enterprises-
dc.subject.otherEnergy policy-
dc.subject.otherTechnology-
dc.subject.otherEthics-
dc.subject.otherFinancial management-
dc.titleEnergy Gen-AI Technology Framework: A perspective of energy efficiency and business ethics in operation management-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec758645-
dc.date.updated2025-06-25T10:28:22Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Empresa)

Files in This Item:
File Description SizeFormat 
894167.pdf9.58 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons