Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMacGowan, Guy-
dc.contributor.authorCharman, Sarah Jane-
dc.contributor.authorOkwose, Nduka C-
dc.contributor.authorGroenewegen, Amy-
dc.contributor.authorDel Franco, Annamaria-
dc.contributor.authorTafelmeier, Maria-
dc.contributor.authorPreveden, Andrej-
dc.contributor.authorGarcia Sebastian, Cristina-
dc.contributor.authorFuller, Amy S-
dc.contributor.authorSinclair, David-
dc.contributor.authorEdwards, Duncan-
dc.contributor.authorNelissen, Anne Pauline-
dc.contributor.authorMalitas, Petros-
dc.contributor.authorZisaki, Aikaterini-
dc.contributor.authorDarbà, Josep-
dc.contributor.authorBosnic, Zoran-
dc.contributor.authorVracar, Petar-
dc.contributor.authorBarlocco, Fausto-
dc.contributor.authorFotiadis, Dimitris-
dc.contributor.authorBanerjee, Prithwish-
dc.date.accessioned2025-06-26T22:02:53Z-
dc.date.available2025-06-26T22:02:53Z-
dc.date.issued2025-01-07-
dc.identifier.issn2044-6055-
dc.identifier.urihttps://hdl.handle.net/2445/221805-
dc.description.abstractIntroduction Heart failure (HF) is a complex clinical syndrome. Accurate risk stratification and early diagnosis of HF are challenging as its signs and symptoms are non-specific. We propose to address this global challenge by developing the STRATIFYHF artificial intelligence-driven decision support system (DSS), which uses novel analytical methods in determining the risk, diagnosis and prognosis of HF. The primary aim of the present study is to collect prospective clinical data to validate the STRATIFYHF DSS (in terms of diagnostic accuracy, sensitivity and specificity) as a tool to predict the risk, diagnosis and progression of HF. The secondary outcomes are the demographic and clinical predictors of risk, diagnosis and progression of HF.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherBMJ Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1136/bmjopen-2024-091793-
dc.relation.ispartofBMJ Open, 2025, num.15, p. 1-9-
dc.relation.urihttps://doi.org/https://doi.org/10.1136/bmjopen-2024-091793-
dc.rightscc-by (c) Charman, S.J. et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Economia)-
dc.subject.classificationDiagnòstic-
dc.subject.classificationInsuficiència cardíaca-
dc.subject.classificationMètode longitudinal-
dc.subject.classificationIntel·ligència artificial-
dc.subject.classificationPresa de decisions multicriteri-
dc.subject.classificationFactors de risc en les malalties-
dc.subject.otherDiagnosis-
dc.subject.otherHeart failure-
dc.subject.otherLongitudinal method-
dc.subject.otherArtificial intelligence-
dc.subject.otherMultiple criteria decision making-
dc.subject.otherRisk factors in diseases-
dc.titleClinical validation of an artificial intelligence-based decision support system for diagnosis and risk stratification of heart failure (STRATIFYHF): a protocol for a prospective, multicentre longitudinal study-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec753278-
dc.date.updated2025-06-26T22:02:53Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Economia)

Files in This Item:
File Description SizeFormat 
875249.pdf514.19 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons