Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/221927
Title: Energy Optimization in Research Infrastructure: A Data-Driven Analysis of the CEK Building
Author: Passada Gil, Júlia
Director/Tutor: Albert Compte
Keywords: Enginyeria biomèdica
Auditoria energètica
Treballs de fi de grau
Biomedical engineering
Energy auditing
Bachelor's theses
Issue Date: 11-Jun-2024
Abstract: This thesis presents a bottom-up energy audit of the Esther Koplowitz Centre (CEK) building at IDIBAPS, Barcelona, to guide targeted energy-saving actions. Due to the absence of permanent metering, this study combined a detailed equipment inventory, short-term monitoring campaigns, and statistical modeling of hourly electricity data from 2023–2024. The calibrated model explains 97% of measured weekly demand, with a relative error of 3%, and captures seasonal variation with a Mean Absolute Percentage Error (MAPE) of 6.8%. Disaggregation reveals a concentrated energy profile, with HVAC systems responsible for ~52% of annual use, followed by laboratory equipment (~36%) and the Data Processing Center (CPD; ~9%). Regression analysis further shows that outdoor temperature and daily occupancy explain 83% of day-to-day energy variability, with summer temperatures strongly influencing seasonal peaks. Three high-impact interventions emerge, ranked by estimated savings: (i) submetering and recommissioning HVAC subsystems; (ii) raising set-points of ultra-low temperature (ULT) freezers from -80 °C to -70 °C; and (iii) increasing the CPD cooling set-point from 24 °C to 26 °C. Together, these measures would cut consumption by ≈ 0.43 GWh per year (about 8.1 MWh per week)—11 % of today’s 3.87 GWh annual load. Despite limited metering infrastructure, this approach demonstrates how a datainformed audit can reliably uncover savings opportunities and provide a scalable audit framework applicable to comparable biomedical research infrastructures.
Note: Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2024-2025. Tutor: Albert Compte ; Director: Cristina Navas
URI: https://hdl.handle.net/2445/221927
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Biomèdica

Files in This Item:
File Description SizeFormat 
TFG_Passada_Gil_Julia.pdf3.05 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons