Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/222295
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Farris, Riccardo | - |
dc.contributor.author | Neyman, Konstantin M. | - |
dc.contributor.author | Bruix Fusté, Albert | - |
dc.date.accessioned | 2025-07-16T11:21:51Z | - |
dc.date.issued | 2024-10-04 | - |
dc.identifier.issn | 0021-9606 | - |
dc.identifier.uri | https://hdl.handle.net/2445/222295 | - |
dc.description.abstract | The energetically most favorable chemical ordering of bimetallic nanoparticles can be characterized by combining global optimization algorithms and surrogate energy models. The latter approximate the energy of nanoalloys relying on structural descriptors, training models, and data. Here, we systematically evaluate the performance of highly data-efficient topological descriptors [Kozlov et al., Chem. Sci. 6, 3868 (2015)] for predicting the energies of metal nanoalloys with different chemical orderings. We also introduce a new descriptor based on atomic coordination types, which results in a less data-efficient and interpretable approach, but improves the general accuracy and the quantification of orderings in the inner parts of nanoparticles. The capacity of both the original and new approaches in combination with a basin hopping algorithm is illustrated by generating convex hulls of PdZn nanoalloys and predicting the resulting active surface site distribution as a function of particle composition. Finally, we show how these approaches can be combined with machine-learning adsorption models in electrocatalysis studies for a fast evaluation of the reactivity landscape of targeted nanoalloys. | - |
dc.format.extent | 18 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | American Institute of Physics (AIP) | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1063/5.0214377 | - |
dc.relation.ispartof | Journal of Chemical Physics, 2024, vol. 161, p. 1-18 | - |
dc.relation.uri | https://doi.org/10.1063/5.0214377 | - |
dc.rights | (c) American Institute of Physics (AIP), 2024 | - |
dc.source | Articles publicats en revistes (Ciència dels Materials i Química Física) | - |
dc.subject.classification | Teoria del funcional de densitat | - |
dc.subject.classification | Mètode de Montecarlo | - |
dc.subject.classification | Nanopartícules | - |
dc.subject.other | Density functionals | - |
dc.subject.other | Monte Carlo method | - |
dc.subject.other | Nanoparticles | - |
dc.title | Determining the chemical ordering in nanoalloys by considering atomic coordination types | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 756287 | - |
dc.date.updated | 2025-07-16T11:21:51Z | - |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | - |
dc.embargo.lift | 2025-10-03 | - |
dc.date.embargoEndDate | info:eu-repo/date/embargoEnd/2025-10-03 | - |
Appears in Collections: | Articles publicats en revistes (Ciència dels Materials i Química Física) Articles publicats en revistes (Institut de Química Teòrica i Computacional (IQTCUB)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
885260.pdf | 9.78 MB | Adobe PDF | View/Open Request a copy |
Document embargat fins el
3-10-2025
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.