Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222644
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFlorido Llinàs, Robert-
dc.contributor.authorFagella Rabionet, Núria-
dc.date.accessioned2025-07-29T07:59:24Z-
dc.date.available2025-07-29T07:59:24Z-
dc.date.issued2024-11-25-
dc.identifier.issn0308-2105-
dc.identifier.urihttps://hdl.handle.net/2445/222644-
dc.description.abstractWe present a one-parameter family $F_\lambda$ of transcendental entire functions with zeros, whose Newton's method yields wandering domains, coexisting with the basins of the roots of $F_\lambda$. Wandering domains for Newton maps of zero-free functions have been built before by, e.g. Buff and Rückert [23] based on the lifting method. This procedure is suited to our Newton maps as members of the class of projectable functions (or maps of the cylinder), i.e. transcendental meromorphic functions $f(z)$ in the complex plane that are semiconjugate, via the exponential, to some map $g(w)$, which may have at most a countable number of essential singularities. In this paper, we make a systematic study of the general relation (dynamical and otherwise) between $f$ and $g$, and inspect the extension of the logarithmic lifting method of periodic Fatou components to our context, especially for those $g$ of finite-type. We apply these results to characterize the entire functions with zeros whose Newton's method projects to some map $g$ which is defined at both 0 and $\infty$. The family $F_\lambda$ is the simplest in this class, and its parameter space shows open sets of $\lambda$-values in which the Newton map exhibits wandering or Baker domains, in both cases regions of initial conditions where Newton's root-finding method fails.-
dc.format.extent50 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherCambridge University Press (CUP)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/DOI:10.1017/prm.2024.81-
dc.relation.ispartofProceedings of the Royal Society of Edinburgh: Section A Mathematics, 2024, vol. 2024-
dc.relation.urihttps://doi.org/DOI:10.1017/prm.2024.81-
dc.rightscc by (c) Robert Florido et al., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationSistemes dinàmics complexos-
dc.subject.classificationFuncions meromorfes-
dc.subject.otherComplex dynamical systems-
dc.subject.otherMeromorphic functions-
dc.titleDynamics of projectable functions: Towards an atlas of wandering domains for a family of Newton maps.-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec753826-
dc.date.updated2025-07-29T07:59:24Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
877273.pdf1.78 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons