Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/222644
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Florido Llinàs, Robert | - |
dc.contributor.author | Fagella Rabionet, Núria | - |
dc.date.accessioned | 2025-07-29T07:59:24Z | - |
dc.date.available | 2025-07-29T07:59:24Z | - |
dc.date.issued | 2024-11-25 | - |
dc.identifier.issn | 0308-2105 | - |
dc.identifier.uri | https://hdl.handle.net/2445/222644 | - |
dc.description.abstract | We present a one-parameter family $F_\lambda$ of transcendental entire functions with zeros, whose Newton's method yields wandering domains, coexisting with the basins of the roots of $F_\lambda$. Wandering domains for Newton maps of zero-free functions have been built before by, e.g. Buff and Rückert [23] based on the lifting method. This procedure is suited to our Newton maps as members of the class of projectable functions (or maps of the cylinder), i.e. transcendental meromorphic functions $f(z)$ in the complex plane that are semiconjugate, via the exponential, to some map $g(w)$, which may have at most a countable number of essential singularities. In this paper, we make a systematic study of the general relation (dynamical and otherwise) between $f$ and $g$, and inspect the extension of the logarithmic lifting method of periodic Fatou components to our context, especially for those $g$ of finite-type. We apply these results to characterize the entire functions with zeros whose Newton's method projects to some map $g$ which is defined at both 0 and $\infty$. The family $F_\lambda$ is the simplest in this class, and its parameter space shows open sets of $\lambda$-values in which the Newton map exhibits wandering or Baker domains, in both cases regions of initial conditions where Newton's root-finding method fails. | - |
dc.format.extent | 50 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Cambridge University Press (CUP) | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/DOI:10.1017/prm.2024.81 | - |
dc.relation.ispartof | Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2024, vol. 2024 | - |
dc.relation.uri | https://doi.org/DOI:10.1017/prm.2024.81 | - |
dc.rights | cc by (c) Robert Florido et al., 2024 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Sistemes dinàmics complexos | - |
dc.subject.classification | Funcions meromorfes | - |
dc.subject.other | Complex dynamical systems | - |
dc.subject.other | Meromorphic functions | - |
dc.title | Dynamics of projectable functions: Towards an atlas of wandering domains for a family of Newton maps. | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 753826 | - |
dc.date.updated | 2025-07-29T07:59:24Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
877273.pdf | 1.78 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License