Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/222802
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAke, Franz-
dc.contributor.authorSchilling, Marcel-
dc.contributor.authorFernandez Moya, Sandra M.-
dc.contributor.authorJaya Ganesh, Akshay-
dc.contributor.authorGutiérrez Franco, Ana-
dc.contributor.authorLi, Lei-
dc.contributor.authorPlass, Mireya-
dc.date.accessioned2025-08-28T08:46:57Z-
dc.date.available2025-08-28T08:46:57Z-
dc.date.issued2025-12-01-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://hdl.handle.net/2445/222802-
dc.description.abstractSingle-cell RNA sequencing (scRNA-seq) facilitates the study of transcriptome diversity in individual cells. Yet, many existing methods lack sensitivity and accuracy. Here we introduce SCALPEL, a Nextflow-based tool to quantify and characterize transcript isoforms from standard 3' scRNA-seq data. Using synthetic data, SCALPEL demonstrates higher sensitivity and specificity compared to other tools. In real datasets, SCALPEL predictions have a high agreement with other tools and can be experimentally validated. The use of SCALPEL on real datasets reveals novel cell populations undetectable using single-cell gene expression data, confirms known 3' UTR length changes during cell differentiation, and identifies cell-type specific miRNA signatures regulating isoform expression. Additionally, we show that SCALPEL improves isoform quantification using paired long- and short-read scRNA-seq data. Overall, SCALPEL expands the current scRNA-seq toolkit to explore post-transcriptional gene regulation across species, tissues, and technologies, advancing our understanding of gene regulatory mechanisms at the single-cell level.-
dc.format.extent17 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-025-61118-0-
dc.relation.ispartofNature Communications, 2025, vol. 16, num.1-
dc.relation.urihttps://doi.org/10.1038/s41467-025-61118-0-
dc.rightscc-by-nc-nd (c) Ake, F. et al., 2025-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subject.classificationExpressió gènica-
dc.subject.classificationMicro RNAs-
dc.subject.classificationAnimals-
dc.subject.classificationRatolins (Animals de laboratori)-
dc.subject.otherGene expression-
dc.subject.otherMicroRNAs-
dc.subject.otherAnimals-
dc.subject.otherMice (Laboratory animals)-
dc.titleQuantification of transcript isoforms at the single-cell level using SCALPEL-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec759721-
dc.date.updated2025-08-28T08:46:57Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid40640129-
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
898078.pdf3.62 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons