Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223005
Title: Improving Classical Shadows with Grouping Strategies
Author: Herraiz–Bayó, Marçal
Director/Tutor: Casas Font, Berta
Masot Llima, Sergi
Juliá-Díaz, Bruno
Keywords: Ordinadors quàntics
Treballs de fi de grau
Quantum computers
Bachelor's theses
Issue Date: Jun-2025
Abstract: Efficiently extracting information from quantum systems is a key challenge in quantum computing. This thesis explores the combination of two complementary techniques—classical shadows and grouping—to improve quantum measurement strategies under resource constraints. Classical shadows enable the prediction of many properties of a quantum state from a small number of measurements, while grouping strategies reduce the number of measurements needed by exploiting commutativity among observables. We implement a hybrid method, Shadow–Grouping, that unifies both approaches to enhance measurement efficiency on current quantum devices. We also demonstrate its effectiveness by estimating the ground state energies of H2 and LiH molecules: compared to standard classical shadows, our results show that Shadow–Grouping achieves up to 18-fold gains in accuracy and reaches chemical precision using orders of magnitude fewer measurements.
Note: Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutors: Berta Casas–Font, Sergi Masot–Llima. Tutor: Bruno Juliá–Díaz
URI: https://hdl.handle.net/2445/223005
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
TFG-Herraiz-Bayó-Marçal.pdf509.69 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons