Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223126
Title: L-invariants for cohomological representations of PGL(2) over arbitrary number fields
Author: Gehrmann, Lennart
Pati, Maria Rosaria
Keywords: Espais de Hilbert
Teoria de Galois
Hilbert space
Galois theory
Issue Date: 30-May-2024
Abstract: Let π be a cuspidal, cohomological automorphic representation of an inner form G of PGL2 over a number field F of arbitrary signature. Further, let p be a prime of F such that G is split at p and the local component πp of π at p is the Steinberg representation. Assuming that the representation is noncritical at p, we construct automorphic L-invariants for the representation π. If the number field F is totally real, we show that these automorphic L-invariants agree with the Fontaine–Mazur L-invariant of the associated p-adic Galois representation. This generalizes a recent result of Spieß respectively Rosso and the first named author from the case of parallel weight 2 to arbitrary cohomological weights.
Note: Reproducció del document publicat a: https://doi.org/10.1017/fms.2024.51
It is part of: Forum of Mathematics, Sigma, 2024, vol. 12
URI: https://hdl.handle.net/2445/223126
Related resource: https://doi.org/10.1017/fms.2024.51
ISSN: 2050-5094
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
899450.pdf500.49 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons