Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/223250
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Sala Llonch, Roser | - |
dc.contributor.advisor | Tudela Fernández, Raúl | - |
dc.contributor.author | Roqué Greoles, Carles | - |
dc.date.accessioned | 2025-09-18T13:41:03Z | - |
dc.date.available | 2025-09-18T13:41:03Z | - |
dc.date.issued | 2025-06 | - |
dc.identifier.uri | https://hdl.handle.net/2445/223250 | - |
dc.description | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutors: Roser Sala-Llonch, Raúl Tudela | ca |
dc.description.abstract | Brain Functional Magnetic Resonance Image (fMRI) is a widely used non-invasive technique for measuring brain activity and mapping functional regions, but has a complex spatiotemporal structure which complicates the analysis. We present an extension to an existing qualitycontrol (QC) pipeline for resting-state fMRI that automatically detects previously underexplored periodic spatial artefacts. By applying a 3D Fourier transform across each volume and computing inter-slice Pearson correlations over time, we generate summary plots that highlight high-frequency peaks and abnormally elevated correlations, indicative of periodic noise. We integrate these diagnostics in the existing visual and quantitative QC report, allowing reviewers to assign a second periodic-noise PASS/MAYBE/NO-PASS decision based on the presence of periodic noise. In a cohort of 1,178 older adults from the A4 study, our method flagged 42.5% of scans for periodic artifacts that had passed conventional QC. In a classification analysis using a support vector machine with features extracted from the Fourier transform and the spatial correlation analyses against the expert QC labels, we obtained an overall accuracy of 79.5% with a recall for PASS of 92.0%. | ca |
dc.format.extent | 6 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Roqué, 2025 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Física | - |
dc.subject.classification | Ressonància magnètica funcional | cat |
dc.subject.classification | Transformacions de Fourier | cat |
dc.subject.classification | Treballs de fi de grau | cat |
dc.subject.other | Functional magnetic resonance imaging | eng |
dc.subject.other | Fourier transformations | eng |
dc.subject.other | Bachelor's theses | eng |
dc.title | Detection of spatial artifacts on resting state functional magnetic resonance data | eng |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFG-Roque-Greoles-Carles.pdf | 1.08 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License