Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223276
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPujol Vila, Oriol-
dc.contributor.authorRey Davila, Ana-
dc.date.accessioned2025-09-19T10:35:04Z-
dc.date.available2025-09-19T10:35:04Z-
dc.date.issued2025-06-30-
dc.identifier.urihttps://hdl.handle.net/2445/223276-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Oriol Pujol Vilaca
dc.description.abstractThis project explores the use of One Class Classification methods to predict credit risk in highly imbalanced financial datasets. Unlike traditional supervised models, OCC approaches focus only on the majority class, in this case, customers with good payment behaviour, and aim to detect unusual patterns that might suggest a higher risk of default. The study is divided into three experimental phases. The first phase uses a limited set of 13 variables, selected and categorised by experts based on risk. The second phase removes this expert selection and uses all available features. In the third phase, a hybrid strategy is tested by adding the anomaly scores generated by OCC models as extra input variables to supervised models. The models are evaluated using ROC AUC and PR AUC, two metrics well suited for imbalanced classification problems. The main goal is to analyse whether anomaly detection techniques can support or improve current risk assessment strategies in a real business setting. However, the results did not confirm the initial hypothesis, as One Class models and hybrid approaches did not outperform traditional supervised methods.ca
dc.format.extent45 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Ana Rey Davila, 2025-
dc.rightscodi: GPL (c) Ana Rey Davila, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationRisc de crèdit-
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)-
dc.subject.classificationAnàlisi de regressió-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherCredit risk-
dc.subject.otherLearning classifier systems-
dc.subject.otherRegression analysis-
dc.subject.otherMaster's thesis-
dc.titleApplication of One Class Models for Financial Risk Classificationca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
Application-of-One-Class-Models-for-Financial-Risk-Classification-main.zipCodi font1.01 MBzipView/Open
tfm_Rey_Davila_Ana.pdfMemòria1.31 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons