Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223295
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalantari, Aref-
dc.contributor.authorShahbazi, Mehrab-
dc.contributor.authorSchneider, Marc-
dc.contributor.authorRaikes, Adam C.-
dc.contributor.authorFrazão, Victor Vera-
dc.contributor.authorBhattrai, Avnish-
dc.contributor.authorCarnevale, Lorenzo-
dc.contributor.authorDiao, Yujian-
dc.contributor.authorFranx, Bart A. A.-
dc.contributor.authorGammaraccio, Francesco-
dc.contributor.authorGoncalves, Lisa Marie-
dc.contributor.authorLee, Susan-
dc.contributor.authorLeeuwen, Esther M. van-
dc.contributor.authorMichalek, Annika-
dc.contributor.authorMueller, Susanne-
dc.contributor.authorRivera Olvera, Alejandro-
dc.contributor.authorPadro, Daniel-
dc.contributor.authorKotb Selim, Mohamed-
dc.contributor.authorToorn, Annette van der-
dc.contributor.authorVarriano, Federico-
dc.contributor.authorVrooman, Roël-
dc.contributor.authorWenk, Patricia-
dc.contributor.authorAlbers, H. Elliott-
dc.contributor.authorBoehm Sturm, Philipp-
dc.contributor.authorBudinger, Eike-
dc.contributor.authorCanals, Santiago-
dc.contributor.authorSantis, Silvia de-
dc.contributor.authorDiaz Brinton, Roberta-
dc.contributor.authorDijkhuizen, Rick M.-
dc.contributor.authorEixarch Roca, Elisenda-
dc.contributor.authorForloni, Gianluigi-
dc.contributor.authorGrandjean, Joanes-
dc.contributor.authorHekmatyar, Khan-
dc.contributor.authorJacobs, Russell E.-
dc.contributor.authorJelescu, Ileana-
dc.contributor.authorKurniawan, Nyoman D.-
dc.contributor.authorLembo, Giuseppe-
dc.contributor.authorLongo, Dario Livio-
dc.contributor.authorSta Maria, Naomi S.-
dc.contributor.authorMicotti, Edoardo-
dc.contributor.authorMuñoz Moreno, Emma-
dc.contributor.authorRamos Cabrer, Pedro-
dc.contributor.authorReichardt, Wilfried-
dc.contributor.authorSoria, Guadalupe-
dc.contributor.authorIelacqua, Giovanna D.-
dc.contributor.authorAswendt, Markus-
dc.date.accessioned2025-09-19T12:56:36Z-
dc.date.available2025-09-19T12:56:36Z-
dc.date.issued2024-09-27-
dc.identifier.urihttps://hdl.handle.net/2445/223295-
dc.description.abstractMagnetic resonance imaging (MRI) is a valuable tool for studying brain structure and function in animal and clinical studies. With the growth of public MRI repositories, access to data has finally become easier. However, filtering large datasets for potential poor-quality outliers can be a challenge. We present AIDAqc, a machine-learning-assisted automated Python-based command-line tool for small animal MRI quality assessment. Quality control features include signal-to-noise ratio (SNR), temporal SNR, and motion. All features are automatically calculated and no regions of interest are needed. Automated outlier detection for a given dataset combines the interquartile range and the machine-learning methods one-class support vector machine, isolation forest, local outlier factor, and elliptic envelope. To evaluate the reliability of individual quality control metrics, a simulation of noise (Gaussian, salt and pepper, speckle) and motion was performed. In outlier detection, single scans with induced artifacts were successfully identified by AIDAqc. AIDAqc was challenged in a large heterogeneous dataset collected from 19 international laboratories, including data from mice, rats, rabbits, hamsters, and gerbils, obtained with different hardware and at different field strengths. The results show that the manual inter-rater agreement (mean Fleiss Kappa score 0.17) is low when identifying poor-quality data. A direct comparison of AIDAqc results, therefore, showed only low-to-moderate concordance. In a manual post hoc validation of AIDAqc output, precision was high (>70%). The outlier data can have a significant impact on further postprocessing, as shown in representative functional and structural connectivity analysis. In summary, this pipeline optimized for small animal MRI provides researchers with a valuable tool to efficiently and effectively assess the quality of their MRI data, which is essential for improved reliability and reproducibility.-
dc.format.extent23 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherThe MIT Press-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1162/imag_a_00317-
dc.relation.ispartofImaging Neuroscience, 2024, vol. 2-
dc.relation.urihttps://doi.org/10.1162/imag_a_00317-
dc.rightscc-by (c) Kalantari, A. et al., 2024-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)-
dc.subject.classificationImatges per ressonància magnètica-
dc.subject.classificationNeuroanatomia-
dc.subject.classificationMapatge del cervell-
dc.subject.otherMagnetic resonance imaging-
dc.subject.otherNeuroanatomy-
dc.subject.otherBrain mapping-
dc.titleAutomated quality control of small animal MR neuroimaging data-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec758497-
dc.date.updated2025-09-19T12:56:36Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid40212822-
Appears in Collections:Articles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)

Files in This Item:
File Description SizeFormat 
893777.pdf8.12 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons