Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223500
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLloberas Blanch, Núria-
dc.contributor.authorFernández-Alarcón, Beatriz-
dc.contributor.authorVidal Alabró, Anna-
dc.contributor.authorColom Codina, Helena-
dc.date.accessioned2025-10-03T15:21:06Z-
dc.date.available2025-10-03T15:21:06Z-
dc.date.issued2025-12-01-
dc.identifier.issn0934-0874-
dc.identifier.urihttps://hdl.handle.net/2445/223500-
dc.description.abstractTacrolimus is an immunosuppressant with a narrow therapeutic index and a high intra- and inter-patient variability showing significant challenges in optimal dosing and monitoring. Historically, pre-dose concentration monitoring and simplified area under the curve measurements have been the standard approach. However, recent advances in pharmacokinetic modeling have improved individualized dosing strategies, moving beyond empirical methods. This review explores the evolving landscape of Tacrolimus therapeutic drug monitoring, focusing on advanced modeling techniques that support personalized dosing. Key methodological approaches include Population Pharmacokinetic (PopPK) modeling, Bayesian prediction, Physiologically-Based Pharmacokinetic (PBPK) modeling, and emerging machine learning and artificial intelligence technologies. While no single method provides a perfect solution, these approaches are complementary and offer increasingly sophisticated tools for dose individualization. The review critically examines the potential and limitations of current modeling strategies, highlighting the complexity of translating advanced statistical and mathematical techniques into clinically accessible tools. A significant challenge remains the gap between sophisticated modeling techniques and the practical usability for healthcare professionals. The need for user-friendly platforms is emphasized, with recognition of existing commercial solutions while also noting their inherent limitations. Future directions point towards more integrated, intelligent systems that can bridge the current technological and practical gaps in personalized immunosuppressant therapy.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/ti.2025.14201-
dc.relation.ispartofTransplant International, 2025, vol. 38-
dc.relation.urihttps://doi.org/10.3389/ti.2025.14201-
dc.rightscc-by (c) Lloberas, N. et al., 2025-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)-
dc.subject.classificationTrasplantament renal-
dc.subject.classificationImmunosupressors-
dc.subject.classificationFarmacogenètica-
dc.subject.otherKidney transplantation-
dc.subject.otherImmunosupressive agents-
dc.subject.otherPharmacogenetics-
dc.titleState of art of dose individualization to support tacrolimus drug monitoring: What’s next?-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec760929-
dc.date.updated2025-10-03T15:21:06Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
901307.pdf1.04 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons