Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/223689| Title: | Nuclear pore complex dysfunction drives TDP-43 pathology in ALS |
| Author: | Ramírez Núñez, Omar Rico-Rios, Santiago Torres, Pascual Ayala, Victòria Fernández-Bernal, Anna Ceron-Codorniu, Miriam Andrés-Benito, Pol Vinyals, A. Maqsood, S. Ferrer, Isidro Pamplona, Reinald Portero-Otin, Manuel |
| Keywords: | Patologia cel·lular Malalties neurodegeneratives Esclerosi lateral amiotròfica Cellular pathology Neurodegenerative Diseases Amyotrophic lateral sclerosis |
| Issue Date: | 15-Aug-2025 |
| Publisher: | Elsevier |
| Abstract: | Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components-is a consistent finding across ALS postmortem spinal cord, SOD1<^>G93A and TDP-43 mutant mouse models, and human cell systems.CRISPR-mediated depletion of NUP107 in human cells triggers hallmark features of ALS pathology, including cytoplasmic TDP-43 mislocalization, increased phosphorylation, and autophagy dysfunction. Conversely, TDP-43 knockdown perturbs NPC composition, suggesting a reciprocal regulatory loop. Crucially, we demonstrate that oxidative stress exacerbated NPC subunit mislocalization and enhanced TDP-43 aggregation. Using oxime blotting and DNPH assays, we show that FG-repeat subunits of NPC were direct targets of redox-driven carbonylation, indicating that oxidative modifications compromise NPC integrity thuspotentially affecting nucleocytoplasmic transport. Our findings established NPC dysfunction as a redox-sensitive driver of TDP-43 pathology in ALS and highlight nucleocytoplasmic transport as a promising therapeutic axis. The susceptibility of long-lived NPC proteins to oxidative damage provides a mechanistic link between redox stress, proteostasis collapse, and neurodegeneration. |
| Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.redox.2025.103824 |
| It is part of: | Redox Biology, 2025, vol. 86, 103824 |
| URI: | https://hdl.handle.net/2445/223689 |
| Related resource: | https://doi.org/10.1016/j.redox.2025.103824 |
| ISSN: | 2213-2317 |
| Appears in Collections: | Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL)) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 1-s2.0-S2213231725003374-main.pdf | 12.5 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
