Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223689
Title: Nuclear pore complex dysfunction drives TDP-43 pathology in ALS
Author: Ramírez Núñez, Omar
Rico-Rios, Santiago
Torres, Pascual
Ayala, Victòria
Fernández-Bernal, Anna
Ceron-Codorniu, Miriam
Andrés-Benito, Pol
Vinyals, A.
Maqsood, S.
Ferrer, Isidro
Pamplona, Reinald
Portero-Otin, Manuel
Keywords: Patologia cel·lular
Malalties neurodegeneratives
Esclerosi lateral amiotròfica
Cellular pathology
Neurodegenerative Diseases
Amyotrophic lateral sclerosis
Issue Date: 15-Aug-2025
Publisher: Elsevier
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components-is a consistent finding across ALS postmortem spinal cord, SOD1<^>G93A and TDP-43 mutant mouse models, and human cell systems.CRISPR-mediated depletion of NUP107 in human cells triggers hallmark features of ALS pathology, including cytoplasmic TDP-43 mislocalization, increased phosphorylation, and autophagy dysfunction. Conversely, TDP-43 knockdown perturbs NPC composition, suggesting a reciprocal regulatory loop. Crucially, we demonstrate that oxidative stress exacerbated NPC subunit mislocalization and enhanced TDP-43 aggregation. Using oxime blotting and DNPH assays, we show that FG-repeat subunits of NPC were direct targets of redox-driven carbonylation, indicating that oxidative modifications compromise NPC integrity thuspotentially affecting nucleocytoplasmic transport. Our findings established NPC dysfunction as a redox-sensitive driver of TDP-43 pathology in ALS and highlight nucleocytoplasmic transport as a promising therapeutic axis. The susceptibility of long-lived NPC proteins to oxidative damage provides a mechanistic link between redox stress, proteostasis collapse, and neurodegeneration.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.redox.2025.103824
It is part of: Redox Biology, 2025, vol. 86, 103824
URI: https://hdl.handle.net/2445/223689
Related resource: https://doi.org/10.1016/j.redox.2025.103824
ISSN: 2213-2317
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
1-s2.0-S2213231725003374-main.pdf12.5 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons