Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/223844
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPuig Puig, Anna-
dc.contributor.advisorRodríguez Santiago, Inmaculada-
dc.contributor.authorJurado González, Rubén-
dc.date.accessioned2025-10-23T09:07:40Z-
dc.date.issued2025-07-04-
dc.identifier.urihttps://hdl.handle.net/2445/223844-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Anna Puig Puig i Inmaculada Rodríguez Santiagoca
dc.description.abstractComplex multivariate datasets—characterized by complex parent-child structures and rich attributes such as hierarchies and networks—pose challenges for intuitive exploration and analysis. This work presents an interactive visualization system integrated with a conversational agent (chatbot) to support natural language interaction with such data, especially for domain experts. Users can upload datasets, issue natural language queries, manipulate interface elements (e.g., buttons, panels), and generate custom visualizations including force-directed graphs, circle-packing layouts, and tabular charts. These features enhance data interpretability and engagement. The system includes a robust NLP pipeline based on DistilBERT for intent classification, optimized through data balancing and retraining. Visualizations, rendered in real time with Plotly and D3.js in a Dash interface, support interactions such as zooming, panning, node selection, and dynamic color mapping via language commands. A Retrieval-Augmented Generation (RAG) pipeline enriches chatbot responses using contextual information from uploaded documents. The system also supports misclassification reporting to iteratively refine the NLP model. It handles large-scale hierarchical data efficiently and has been validated on examples like organizational charts and threaded discussions. Notable features include real-time GUI customization, multi-turn conversational support, and popup visualizations from selected data subsets using intuitive queries (e.g., “Show toxicity distribution”). User testing showed high satisfaction among experts, while novices noted a steeper learning curve during onboarding.ca
dc.format.extent113 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Rubén Jurado González, 2025-
dc.rightscodi: GPL (c) Rubén Jurado González, 2025-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationBots (Programes d'ordinador)ca
dc.subject.classificationTractament del llenguatge natural (Informàtica)ca
dc.subject.classificationVisualització de la informacióca
dc.subject.classificationAgents intel·ligents (Programari)ca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationSistemes informàtics interactiusca
dc.subject.otherInternet bots (Computer software)en
dc.subject.otherNatural language processing (Computer science)en
dc.subject.otherInformation visualizationen
dc.subject.otherIntelligent agents (Computer software)en
dc.subject.otherComputer softwareen
dc.subject.otherBachelor's thesesen
dc.subject.otherInteractive computer systemsen
dc.titleAn Interactive LLM-based Conversational Agent for Complex Data Analysisca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessca
dc.embargo.lift2026-10-23-
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
tfg_Jurado_González_Rubén.pdfMemòria8.7 MBAdobe PDFView/Open    Request a copy
codi.zipCodi font431.66 kBzipView/Open    Request a copy


Embargat   Document embargat fins el 23-10-2026


This item is licensed under a Creative Commons License Creative Commons