Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/23363
Title: | On the relationship between alpha connections and the asymptotic properties of predictive distributions |
Author: | Corcuera Valverde, José Manuel Giummolè, Federica |
Keywords: | Geometria diferencial Connexions (Matemàtica) Estadística matemàtica Teoria de la predicció Differential geometry Prediction theory Connections (Mathematics) Mathematical statistics |
Issue Date: | 1999 |
Publisher: | Bernoulli Society for Mathematical Statistics and Probability |
Abstract: | In a recent paper, Komaki studied the second-order asymptotic properties of predictive distributions, using the Kullback-Leibler divergence as a loss function. He showed that estimative distributions with asymptotically efficient estimators can be improved by predictive distributions that do not belong to the model. The model is assumed to be a multidimensional curved exponential family. In this paper we generalize the result assuming as a loss function any f divergence. A relationship arises between alpha connections and optimal predictive distributions. In particular, using an alpha divergence to measure the goodness of a predictive distribution, the optimal shift of the estimate distribution is related to alpha-covariant derivatives. The expression that we obtain for the asymptotic risk is also useful to study the higher-order asymptotic properties of an estimator, in the mentioned class of loss functions. |
Note: | Reproducció del document publicat a: http://projecteuclid.org/euclid.bj/1173707099 |
It is part of: | Bernoulli, 1999, vol. 5, núm. 1, p. 163-176 |
URI: | https://hdl.handle.net/2445/23363 |
ISSN: | 1350-7265 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
141404.pdf | 303.49 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.