Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/23391
Title: | On Ito's formula for elliptic diffusion processes |
Author: | Bardina i Simorra, Xavier Rovira Escofet, Carles |
Keywords: | Integrals estocàstiques Anàlisi estocàstica Integrals estocàstiques Stochastic analysis |
Issue Date: | 2007 |
Publisher: | Bernoulli Society for Mathematical Statistics and Probability |
Abstract: | Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83-109] prove an extension of Ito's formula for F(Xt, t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisenbaum [Potential Anal. 13 (2000) 303-328] concerning Brownian motion, we show that one can re-express this formula using integration over space and time with respect to local times in place of quadratic covariation. We also show that when the function F has a locally integrable derivative in t, we can avoid the mild continuity condition in t for the derivative of F in x. |
Note: | Reproducció del document publicat a: http://doi.org/10.3150/07-bej6049 |
It is part of: | Bernoulli, 2007, vol. 13, núm. 3, p. 820-830 |
URI: | https://hdl.handle.net/2445/23391 |
Related resource: | http://doi.org/10.3150/07-BEJ6049 |
ISSN: | 1350-7265 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
551774.pdf | 132.27 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.