Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/24513| Title: | Poincar wave equations as Fourier transformations of Galilei wave equations |
| Author: | Gomis Torné, Joaquim Poch Parés, Agustí Pons Ràfols, Josep Maria |
| Keywords: | Àlgebra Equació de Schrödinger Física matemàtica Spin (Física nuclear) Algebra Schrödinger equation Mathematical physics Nuclear spin |
| Issue Date: | 1980 |
| Publisher: | American Institute of Physics |
| Abstract: | The relationship between the Poincar and Galilei groups allows us to write the Poincar wave equations for arbitrary spin as a Fourier transform of the Galilean ones. The relation between the Lagrangian formulation for both cases is also studied. |
| Note: | Reproducció del document proporcionada per AIP i http://dx.doi.org/10.1063/1.524369 |
| It is part of: | Journal of Mathematical Physics, 1980, vol. 21, p. 2682 |
| URI: | https://hdl.handle.net/2445/24513 |
| Related resource: | http://dx.doi.org/10.1063/1.524369 |
| ISSN: | 0022-2488 |
| Appears in Collections: | Articles publicats en revistes (Física Quàntica i Astrofísica) |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
