Please use this identifier to cite or link to this item:
Title: A fully automated hot-wall multiplasma-monochamber reactor for thin film deposition
Author: Roca i Cabarrocas, P. (Pere)
Chevrier, J. B.
Huc, J.
Lloret, A.
Parey, J. Y.
Schmitt, J. P. M.
Keywords: Pel·lícules fines
Semiconductors amorfs
Cèl·lules solars
Thin films
Amorphous semiconductors
Radio frequency
Solar cells
Issue Date: Jul-1997
Publisher: American Institute of Physics
Abstract: We present a study on the development and the evaluation of a fully automated radio-frequency glow discharge system devoted to the deposition of amorphous thin film semiconductors and insulators. The following aspects were carefully addressed in the design of the reactor: (1) cross contamination by dopants and unstable gases, (2) capability of a fully automated operation, (3) precise control of the discharge parameters, particularly the substrate temperature, and (4) high chemical purity. The new reactor, named ARCAM, is a multiplasma-monochamber system consisting of three separated plasma chambers located inside the same isothermal vacuum vessel. Thus, the system benefits from the advantages of multichamber systems but keeps the simplicity and low cost of monochamber systems. The evaluation of the reactor performances showed that the oven-like structure combined with a differential dynamic pumping provides a high chemical purity in the deposition chamber. Moreover, the studies of the effects associated with the plasma recycling of material from the walls and of the thermal decomposition of diborane showed that the multiplasma-monochamber design is efficient for the production of abrupt interfaces in hydrogenated amorphous silicon (a-Si:H) based devices. Also, special attention was paid to the optimization of plasma conditions for the deposition of low density of states a-Si:H. Hence, we also present the results concerning the effects of the geometry, the substrate temperature, the radio frequency power and the silane pressure on the properties of the a-Si:H films. In particular, we found that a low density of states a-Si:H can be deposited at a wide range of substrate temperatures (100°C<Ts<300°C).
Note: Reproducció del document publicat a:
It is part of: Journal of Vacuum Science Technology A-Vacuum Surfaces and Films, 1991, vol. 9, núm. 4, p. 2331
Related resource:
ISSN: 0734-2101
Appears in Collections:Articles publicats en revistes (Física Aplicada)

Files in This Item:
File Description SizeFormat 
507712.pdf950.09 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.