Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/25805
Title: Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea
Author: Almendros López, Isaac
Montserrat Canal, José Ma.
Torres, Marta
González, Constancio
Navajas Navarro, Daniel
Farré Ventura, Ramon
Keywords: Escorça cerebral
Malalties pulmonars obstructives cròniques
Models animals en la investigació
Cerebral cortex
Chronic obstructive pulmonary diseases
Animal models in research
Issue Date: 2010
Publisher: BioMed Central
Abstract: Background: Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fastresponse oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9 mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O2 supply induced by obstructive apneas mimicking OSA.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1186/1465-9921-11-3
It is part of: Respiratory Research, 2010, vol. 11, num. 3
URI: https://hdl.handle.net/2445/25805
Related resource: http://dx.doi.org/10.1186/1465-9921-11-3
ISSN: 1465-9921
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)

Files in This Item:
File Description SizeFormat 
584172.pdf417.64 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons