Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/28883
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Daniele R.-
dc.contributor.authorMitjans Arnal, Montserrat-
dc.contributor.authorMorán Badenas, María del Carmen-
dc.contributor.authorPérez Muñoz, Lourdes-
dc.contributor.authorVinardell Martínez-Hidalgo, Ma. Pilar-
dc.date.accessioned2012-07-25T09:44:49Z-
dc.date.available2012-07-25T09:44:49Z-
dc.date.issued2011-12-01-
dc.identifier.issn0939-4451-
dc.identifier.urihttp://hdl.handle.net/2445/28883-
dc.description.abstractMany strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of N¿- and N¿-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the ¿-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1007/s00726-011-1176-8-
dc.relation.ispartofAmino Acids, 2011-
dc.relation.urihttp://dx.doi.org/10.1007/s00726-011-1176-8-
dc.rights(c) Springer Verlag, 2011-
dc.sourceArticles publicats en revistes (Bioquímica i Fisiologia)-
dc.subject.classificationSistemes d'administració de medicaments-
dc.subject.classificationAminoàcids-
dc.subject.classificationMembranes cel·lulars-
dc.subject.classificationHemòlisi-
dc.subject.classificationAgents tensioactius-
dc.subject.otherDrug delivery systems-
dc.subject.otherAmino acids-
dc.subject.otherCell membranes-
dc.subject.otherHemolysis-
dc.subject.otherSurface active agents-
dc.titleMembrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec600621-
dc.date.updated2012-07-25T09:44:49Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Bioquímica i Fisiologia)

Files in This Item:
File Description SizeFormat 
600621.pdf373.48 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.