Please use this identifier to cite or link to this item:
Title: Regression-based techniques for statistical decision making in single-case designs
Author: Manolov, Rumen
Arnau Gras, Jaume
Solanas Pérez, Antonio
Bono Cabré, Roser
Keywords: Investigació de cas únic
Correlació (Estadística)
Single subject research
Correlation (Statistics)
Issue Date: 2010
Publisher: Facultad de Psicología de la Universidad de Oviedo y el Colegio Oficial de Psicólogos del Principado de Asturias
Abstract: The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.
Note: Reproducció del document publicat a:
It is part of: Psicothema, 2010, vol. 22, num. 4, p. 1026-1032
ISSN: 0214-9915
Appears in Collections:Articles publicats en revistes (Psicologia Social i Psicologia Quantitativa)

Files in This Item:
File Description SizeFormat 
575854.pdf358.7 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.