Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/34463
Title: | A lower bound in Nehari's theorem on the polydisc |
Author: | Ortega Cerdà, Joaquim Seip, Kristian |
Keywords: | Teoria d'operadors Anàlisi de Fourier Anàlisi harmònica Funcions de diverses variables complexes Operator theory Fourier analysis Harmonic analysis Functions of several complex variables |
Issue Date: | Oct-2012 |
Publisher: | Springer |
Abstract: | By theorems of Ferguson and Lacey ($d=2$) and Lacey and Terwilleger ($d>2$), Nehari's theorem is known to hold on the polydisc $\D^d$ for $d>1$, i.e., if $H_\psi$ is a bounded Hankel form on $H^2(\D^d)$ with analytic symbol $\psi$, then there is a function $\varphi$ in $L^\infty(\T^d)$ such that $\psi$ is the Riesz projection of $\varphi$. A method proposed in Helson's last paper is used to show that the constant $C_d$ in the estimate $\|\varphi\|_\infty\le C_d \|H_\psi\|$ grows at least exponentially with $d$; it follows that there is no analogue of Nehari's theorem on the infinite-dimensional polydisc. |
Note: | Versió postprint del document publicat a: http://dx.doi.org/10.1007/s11854-012-0038-y |
It is part of: | Journal d'Analyse Mathematique, 2012, vol. 118, num. 1, p. 339-342 |
URI: | https://hdl.handle.net/2445/34463 |
Related resource: | http://dx.doi.org/10.1007/s11854-012-0038-y |
ISSN: | 0021-7670 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
600313.pdf | 201.61 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.